1
|
He JR, Wei JW, Chen SY, Li N, Zhong XD, Li YQ. Machine Learning-Assisted Synchronous Fluorescence Sensing Approach for Rapid and Simultaneous Quantification of Thiabendazole and Fuberidazole in Red Wine. SENSORS (BASEL, SWITZERLAND) 2022; 22:9979. [PMID: 36560348 PMCID: PMC9785232 DOI: 10.3390/s22249979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Rapid analysis of components in complex matrices has always been a major challenge in constructing sensing methods, especially concerning time and cost. The detection of pesticide residues is an important task in food safety monitoring, which needs efficient methods. Here, we constructed a machine learning-assisted synchronous fluorescence sensing approach for the rapid and simultaneous quantitative detection of two important benzimidazole pesticides, thiabendazole (TBZ) and fuberidazole (FBZ), in red wine. First, fluorescence spectra data were collected using a second derivative constant-energy synchronous fluorescence sensor. Next, we established a prediction model through the machine learning approach. With this approach, the recovery rate of TBZ and FBZ detection of pesticide residues in red wine was 101% ± 5% and 101% ± 15%, respectively, without resorting complicated pretreatment procedures. This work provides a new way for the combination of machine learning and fluorescence techniques to solve the complexity in multi-component analysis in practical applications.
Collapse
|
2
|
Wang Z, Chen L, Zhang L, Zhang W, Deng Y, Liu R, Qin Y, Zhou Z, Diao J. Thermal effects on tissue distribution, liver biotransformation, metabolism and toxic responses in Mongolia racerunner (Eremias argus) after oral administration of beta-cyfluthrin. ENVIRONMENTAL RESEARCH 2020; 185:109393. [PMID: 32203733 DOI: 10.1016/j.envres.2020.109393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Effects of temperature on metabolism/biotransformation and toxicokinetics to lizards are significant, but frequently ignored in toxicology studies. Beta-cyfluthrin (BC) is a pyrethroid insecticide and has been widely used globally. The study aimed to understand the diverse adverse effects of BC to the lizard (Eremias argus) at different temperature regimes. We carried out a single oral BC treatment (20 mg/kg bw) for toxicokinetic study and a 7-day BC (10 mg/kg bw) gavage to look at toxicology by monitoring changes in the biomarkers HSP70, SOD, MDA, CarE, UDPGT, GST, cyp genes, and other metabolic responses. Results showed that BC was lethal to lizards, showing oxidative damages in the liver at ambient temperature (25 °C). Heat stress (35 °C) could exacerbate the oxidative damage (MDA increased) caused by BC, due to the disorder of the antioxidant defense system. The result of tissue distribution and toxicokinetic study also showed that temperature affected the BC biotransformation in lizards. The biotransformation of BC maybe relates to the activation of CarE and UDGPT by heat stress. However, the cyp system and GST didn't increase under BC or/and heat treatments. 1H-NMR metabolomics analysis showed that BC or/and heat stress interfered with energy and amino acid metabolism of the liver. Unlike acute lethal toxicity, the occurrence of the BC and heat stresses has detrimental effects on lizard individuals and populations on sub-lethal levels. Our results indicate that pollution and global warming (or some other extremely weather) may generate significant and harmful effects on lizards.
Collapse
Affiliation(s)
- Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Li Chen
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Luyao Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Wenjun Zhang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yinan Qin
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|