1
|
Ebrahimi T, Keramati M, Khodabakhsh F, Cohan RA. Enzyme variants in biosynthesis and biological assessment of different molecular weight hyaluronan. AMB Express 2024; 14:56. [PMID: 38730188 PMCID: PMC11087452 DOI: 10.1186/s13568-024-01713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
In the present study, low- and high-molecular-weight hyaluronic acids (LMW-HA and HMW-HA) were synthesized in vitro by truncated Streptococcus equisimilis hyaluronan synthases (SeHAS). The enzyme kinetic parameters were determined for each enzyme variant. The MW, structure, dispersity, and biological activity of polymers were determined by electrophoresis, FTIR spectroscopy, carbazole, cell proliferation, and cell migration assay, respectively. The specific activities were calculated as 7.5, 6.8, 4.9, and 2.8 µgHA µgenzyme-1 min-1 for SeHAS, HAS123, HAS23, and HASIntra, respectively. The results revealed SeHAS produced a polydisperse HMW-HA (268 kDa), while HAS123 and HAS23 produced a polydisperse LMW-HA (< 30 kDa). Interestingly, HASIntra produced a low-disperse LMW-HA. Kinetics studies revealed the truncated variants displayed increased Km values for two substrates when compared to the wild-type enzyme. Biological assessments indicated all LMW-HAs showed a dose-dependent proliferation activity on endothelial cells (ECs), whereas HMW-HAs exhibited an inhibitory effect. Also, LMW-HAs had the highest cell migration effect at 10 µg/mL, while at 200 µg/mL, both LMW- and HMW-HAs postponed the healing recovery rate. The study elucidated that the transmembrane domains (TMDs) of SeHAS affect the enzyme kinetics, HA-titer, HA-size, and HA-dispersity. These findings open new insight into the rational engineering of SeHAS to produce size-defined HA.
Collapse
Affiliation(s)
- Tahereh Ebrahimi
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Keramati
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| | - Farnaz Khodabakhsh
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Ahangari Cohan
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
MacLeod R, Chan FV, Yuan H, Ye X, Sin YJA, Vitelli TM, Cucu T, Leung A, Baljak I, Osinski S, Fu Y, Jung GID, Amar A, DeAngelis PL, Hellman U, Cowman MK. Selective isolation of hyaluronan by solid phase adsorption to silica. Anal Biochem 2022; 652:114769. [PMID: 35660507 PMCID: PMC9589902 DOI: 10.1016/j.ab.2022.114769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 11/01/2022]
Abstract
A solid phase adsorption method for selective isolation of hyaluronan (HA) from biological samples is presented. Following enzymatic degradation of protein, HA can be separated from sulfated glycosaminoglycans, other unsulfated glycosaminoglycans, nucleic acids, and proteolytic fragments by adsorption to amorphous silica at specific salt concentrations. The adsorbed HA can be released from silica using neutral and basic aqueous solutions. HA ranging in size from ∼9 kDa to MDa polymers has been purified by this method from human serum and conditioned medium of cultured cells.
Collapse
Affiliation(s)
- Rebecca MacLeod
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA.
| | - Fok Vun Chan
- Echelon Biosciences Inc., 675 Arapeen Drive, Suite 302, Salt Lake City, UT, 84108, USA.
| | - Han Yuan
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Xin Ye
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Yun Jin Ashley Sin
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA.
| | - Teraesa M Vitelli
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA.
| | - Tudor Cucu
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Annie Leung
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Irene Baljak
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA.
| | - Samantha Osinski
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Yuhong Fu
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Gyu Ik Daniel Jung
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Anant Amar
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma, OK, 73104, USA.
| | - Urban Hellman
- Department of Public Health and Clinical Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| | - Mary K Cowman
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, 433 First Avenue, 9thfloor, New York, NY, 10010, USA; Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, 6 Metrotech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
3
|
Rodriguez-Marquez CD, Arteaga-Marin S, Rivas-Sánchez A, Autrique-Hernández R, Castro-Muñoz R. A Review on Current Strategies for Extraction and Purification of Hyaluronic Acid. Int J Mol Sci 2022; 23:ijms23116038. [PMID: 35682710 PMCID: PMC9181718 DOI: 10.3390/ijms23116038] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Since it is known that hyaluronic acid contributes to soft tissue growth, elasticity, and scar reduction, different strategies of producing HA have been explored in order to satisfy the current demand of HA in pharmaceutical products and formulations. The current interest deals with production via bacterial and yeast fermentation and extraction from animal sources; however, the main challenge is the right extraction technique and strategy since the original sources (e.g., fermentation broth) represent a complex system containing a number of components and solutes, which complicates the achievement of high extraction rates and purity. This review sheds light on the main pathways for the production of HA, advantages, and disadvantages, along with the current efforts in extracting and purifying this high-added-value molecule from different sources. Particular emphasis has been placed on specific case studies attempting production and successful recovery. For such works, full details are given together with their relevant outcomes.
Collapse
Affiliation(s)
- Carlos Dariel Rodriguez-Marquez
- Tecnologico de Monterrey, Campus Chihuahua, Avenida H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chihuahua, Mexico;
| | - Susana Arteaga-Marin
- Tecnologico de Monterrey, Campus Querétaro, Avenida Epigmenio González 500, San Pablo, Santiago de Querétaro 76130, Qro., Mexico; (S.A.-M.); (R.A.-H.)
| | - Andrea Rivas-Sánchez
- Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501 Sur, Tecnológico, Monterrey 64849, N.L., Mexico;
| | - Renata Autrique-Hernández
- Tecnologico de Monterrey, Campus Querétaro, Avenida Epigmenio González 500, San Pablo, Santiago de Querétaro 76130, Qro., Mexico; (S.A.-M.); (R.A.-H.)
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Correspondence: or
| |
Collapse
|
4
|
Rivas F, Erxleben D, Smith I, Rahbar E, DeAngelis PL, Cowman MK, Hall AR. Methods for isolating and analyzing physiological hyaluronan: a review. Am J Physiol Cell Physiol 2022; 322:C674-C687. [PMID: 35196167 PMCID: PMC8977137 DOI: 10.1152/ajpcell.00019.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/01/2023]
Abstract
The carbohydrate hyaluronan (or hyaluronic acid, HA) is found in all human tissues and biofluids where it has wide-ranging functions in health and disease that are dictated by both its abundance and size. Consequently, hyaluronan evaluation in physiological samples has significant translational potential. Although the analytical tools and techniques for probing other biomolecules such as proteins and nucleic acids have become standard approaches in biochemistry, those available for investigating hyaluronan are less well established. In this review, we survey methods related to the assessment of native hyaluronan in biological specimens, including protocols for separating it from biological matrices and technologies for determining its concentration and molecular weight.
Collapse
Affiliation(s)
- Felipe Rivas
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Dorothea Erxleben
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ian Smith
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Elaheh Rahbar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mary K Cowman
- Department of Biomedical Engineering, New York University Tandon School of Engineering, New York, New York
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Adam R Hall
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
5
|
Gurrani S, Prakasham K, Pasupuleti RR, Wu MT, Dong CD, Ponnusamy VK. Rapid in-syringe-based ultrasonic-energy assisted salt-enhanced homogeneous liquid-liquid microextraction technique coupled with HPLC/low-temperature evaporative light-scattering detector for quantification of sodium hyaluronate in food products. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Validation of an Analytical Method for the Simultaneous Determination of Hyaluronic Acid Concentration and Molecular Weight by Size-Exclusion Chromatography. Molecules 2021; 26:molecules26175360. [PMID: 34500793 PMCID: PMC8433777 DOI: 10.3390/molecules26175360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
The hyaluronic acid (HA) global market growth can be attributed to its use in medical, cosmetic, and pharmaceutical applications; thus, it is important to have validated, analytical methods to ensure confidence and security of its use (and to save time and resources). In this work, a size-exclusion chromatography method (HPLC-SEC) was validated to determine the concentration and molecular distribution of HA simultaneously. Analytical curves were developed for concentration and molecular weight in the ranges of 100-1000 mg/L and 0.011-2.200 MDa, respectively. The HPLC-SEC method showed repeatability and reproducibility greater than 98% and limits of detection and quantification of 12 and 42 mg/L, respectively, and was successfully applied to the analysis of HA from a bacterial culture, as well as cosmetic, and pharmaceutical products.
Collapse
|
7
|
Torres-Acosta MA, Castaneda-Aponte HM, Mora-Galvez LM, Gil-Garzon MR, Banda-Magaña MP, Marcellin E, Mayolo-Deloisa K, Licona-Cassani C. Comparative Economic Analysis Between Endogenous and Recombinant Production of Hyaluronic Acid. Front Bioeng Biotechnol 2021; 9:680278. [PMID: 34368093 PMCID: PMC8334870 DOI: 10.3389/fbioe.2021.680278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022] Open
Abstract
Hyaluronic acid (HA) is a biopolymer with a wide range of applications, mainly in the cosmetic and pharmaceutical sectors. Typical industrial-scale production utilizes organisms that generate HA during their developmental cycle, such as Streptococcus equi sub. zooepidemicus. However, a significant disadvantage of using Streptococcus equi sub. zooepidemicus is that it is a zoonotic pathogen, which use at industrial scale can create several risks. This creates opportunities for heterologous, or recombinant, production of HA. At an industrial scale, the recovery and purification of HA follow a series of precipitation and filtration steps. Current recombinant approaches are developing promising alternatives, although their industrial implementation has yet to be adequately assessed. The present study aims to create a theoretical framework to forecast the advantages and disadvantages of endogenous and recombinant strains in production with the same downstream strategy. The analyses included a selection of the best cost-related recombinant and endogenous production strategies, followed by a sensitivity analysis of different production variables in order to identify the three most critical parameters. Then, all variables were analyzed by varying them simultaneously and employing multiple linear regression. Results indicate that, regardless of HA source, production titer, recovery yield and bioreactor scale are the parameters that affect production costs the most. Current results indicate that recombinant production needs to improve current titer at least 2-fold in order to compete with costs of endogenous production. This study serves as a platform to inform decision-making for future developments and improvements in the recombinant production of HA.
Collapse
Affiliation(s)
- Mario A Torres-Acosta
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, United Kingdom.,Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico
| | - Héctor M Castaneda-Aponte
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico.,Núcleo de Innovación de Sistemas Biológicos, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| | - Liliana M Mora-Galvez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico.,Biomentum SAPI de CV, Guadalajara, Mexico
| | | | | | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,The Queensland Node of Metabolomics Australia, The University of Queensland, Brisbane, QLD, Australia
| | | | - Cuauhtemoc Licona-Cassani
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Mexico.,Núcleo de Innovación de Sistemas Biológicos, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
8
|
Cavalcanti ADD, Melo BAGD, Ferreira BAM, Santana MHA. Performance of the main downstream operations on hyaluronic acid purification. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Karami M, Shahraky MK, Ranjbar M, Tabandeh F, Morshedi D, Aminzade S. Preparation, purification, and characterization of low-molecular-weight hyaluronic acid. Biotechnol Lett 2020; 43:133-142. [PMID: 33131008 DOI: 10.1007/s10529-020-03035-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The use and commercial value of hyaluronic acid (HA) as an important element in the pharmaceutical, biomedical, and cosmetics industry is because of its purity. Four recombinant strains of Corynebacterium glutamicum containing different genes were used to produce HA. RESULTS The production parameters were measured and strain 183.2, with the highest amount of HA (2.15 mg/ml), was selected for further experiments. HA was precipitated by different ratios of ethanol-isopropanol at 4 °C and - 20 °C. Active charcoal (1%) was added to the solvent precipitation mixture at pH 5 and 10. Finally, to achieve more purity and separation, gel filtration chromatography was used. The best result was obtained using an ethanol-isopropanol ratio of 1:1 of at - 20 °C, followed by active charcoal treatment at the acidic pH, and three fractions of the chromatography with molecular weights of 27, 27-110, and < 27 KDa were more analyzed with electrophoresis and FTIR. CONCLUSIONS The present study described a simple, economical, and reproducible method resulting in a high yield for low-MW HA from C. glutamicum.
Collapse
Affiliation(s)
- Mohammad Karami
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| | - Mahvash Khodabandeh Shahraky
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran.
| | - Masume Ranjbar
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| | - Fatemeh Tabandeh
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| | - Dina Morshedi
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| | - Saeed Aminzade
- Department of Bioprocess Engineering, National Institute of Genetic Engineering and Biotechnology (NIGEB), Sharake-Pajoohesh, Km 15, Tehran-Karaj Highway, P.O.Box: 14965/161, Tehran, Iran
| |
Collapse
|
10
|
Structural and surface properties control the recovery and purity of bio- hyaluronic acid upon precipitation with isopropyl alcohol. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Cavalcanti ADD, Melo BAG, Oliveira RC, Santana MHA. Recovery and Purity of High Molar Mass Bio-hyaluronic Acid Via Precipitation Strategies Modulated by pH and Sodium Chloride. Appl Biochem Biotechnol 2018; 188:527-539. [PMID: 30542796 DOI: 10.1007/s12010-018-02935-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023]
Abstract
The effects of ethanol/broth proportions and the number of steps at varying pH in the presence or absence of sodium chloride (NaCl) were studied as precipitation strategies for the recovery and purification of high molar mass bio-hyaluronic acid (Bio-HA). Bio-HA was synthesized by Streptococcus zooepidemicus in a culture medium containing glucose and soy peptones. A single-step precipitation was more attractive than multistep precipitation in terms of recovery and purity as well as decreased use of ethanol. The best conditions in the absence and presence of salt were 2:1 ethanol/broth (v/v) at pH 4 (55.0 ± 0.2% purity and 85.0 ± 0.7% recovery) and 2:1 ethanol/broth (v/v) at pH 7 + 2 mol L-1 NaCl (59.0 ± 0.9% purity and 82.0 ± 4.3% recovery). Dynamic light scattering (DLS) spectra showed different particle sizes as a consequence of the changes in the molecular structure of HA, mainly with changes in pH. Although slight changes in distribution were observed, the average HA molar mass was not affected by the precipitation strategy, remaining on the order of 105 Da. Therefore, pH and NaCl modulated the precipitation performance of HA. These findings are relevant to further optimizing the precipitation step, thus minimizing costs in the later stages of HA purification.
Collapse
Affiliation(s)
- André D D Cavalcanti
- Development of Biotechnological/Microbial Processes Laboratory, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Bruna A G Melo
- Development of Biotechnological/Microbial Processes Laboratory, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Rhelvis C Oliveira
- Development of Biotechnological/Microbial Processes Laboratory, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, 13083-852, Brazil
| | - Maria H A Santana
- Development of Biotechnological/Microbial Processes Laboratory, School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, 13083-852, Brazil.
| |
Collapse
|
12
|
Gözke G, Kirschhöfer F, Prechtl C, Brenner-Weiss G, Krumov NV, Obst U, Posten C. Electrofiltration improves dead-end filtration of hyaluronic acid and presents an alternative downstream processing step that overcomes technological challenges of conventional methods. Eng Life Sci 2017; 17:970-975. [PMID: 32624846 DOI: 10.1002/elsc.201600236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/16/2017] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
Hyaluronic acid (HA) dispersion obtained from the bacteria Streptococcus equi was concentrated by electrofiltration. In the conventional downstream processing of HA, extraction and precipitation lead to increase in environmental issues, structural changes, and time and energy related costs. Using electrofiltration as an alternative technology delivers solutions to these limitations. Experiments were conducted in order to test the applicability of electrofiltration to downstream processing of the negatively charged HA. The structural changes and molecular weight distributions, often a consequence of the employed separation method, were tested by analysis of the initial dispersions and final products. In comparison to the conventional filtration, concentration factors were increased up to almost four times without any detectable structural change in the final product.
Collapse
Affiliation(s)
- Gözde Gözke
- Department of Chemical and Process Engineering Faculty of Engineering Yalova University Yalova Turkey
| | - Frank Kirschhöfer
- Institute of Functional Interfaces Karlsruhe Institute of Technology Leopoldshafen Germany
| | | | - Gerald Brenner-Weiss
- Institute of Functional Interfaces Karlsruhe Institute of Technology Leopoldshafen Germany
| | | | - Ursula Obst
- Institute of Functional Interfaces Karlsruhe Institute of Technology Leopoldshafen Germany
| | - Clemens Posten
- Institute of Process Engineering in Life Sciences Bioprocess Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| |
Collapse
|
13
|
Hamad GM, H. Taha T, E. Hafez E, El Sohaimy S. Physicochemical, Molecular and Functional Characteristics of Hyaluronic Acid as a Functional Food. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajft.2017.72.85] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Mine K, Ujita G, Taya M. Effects of Organic Solvents and Inorganic Salts on Precipitation of Extracellular Polysaccharide from Culture Broth of <i>Polianthes tuberosa</i> Callus. KAGAKU KOGAKU RONBUN 2013. [DOI: 10.1252/kakoronbunshu.39.363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Koji Mine
- Eco-innovation Research Laboratories, Kao Corporation
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| | - Goro Ujita
- Kao Chemicals Europe S. L., Puig dels Tudons 10
| | - Masahito Taya
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
15
|
da Silva FWM, Maia DAS, Oliveira RS, Moreno-Piraján JC, Sapag K, Cavalcante CL, Zgrablich G, Azevedo DCS. Adsorption microcalorimetry applied to the characterisation of adsorbents for CO2capture. CAN J CHEM ENG 2012. [DOI: 10.1002/cjce.21692] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
|