1
|
Virga E, Field RW, Biesheuvel PM, de Vos WM. Theory of oil fouling for microfiltration and ultrafiltration membranes in produced water treatment. J Colloid Interface Sci 2022; 621:431-439. [PMID: 35483176 DOI: 10.1016/j.jcis.2022.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
Abstract
Due to the complexity of oil-in-water emulsions, the existing literature is still missing a mathematical tool that can describe membrane fouling in a fully quantitative manner on the basis of relevant fouling mechanisms. HYPOTHESIS In this work, a quantitative model that successfully describes cake layer formation and pore blocking is presented. We propose that the degree of pore blocking is determined by the membrane contact angle and the resulting surface coverage, while the cake layer is described by a mass balance and a cake erosion flux. VALIDATION The model is validated by comparison to experimental data from previous works (Dickhout et al. 2019; Virga et al., 2020) where membrane type, surfactant type and salinity were varied. Most input parameters could be directly taken from the experimental conditions, while four fitting parameters were required. FINDINGS The experimental data can be well described by the model which was developed to provide insight into the dominant fouling mechanisms. Moreover, where existing models usually assume that pore blocking precedes cake layer formation, here we find that cake layer formation can start and occur while the degree of pore blocking is still increasing, in line with the more dynamic nature of oil droplets filtration. These new conceptual advances in the field of colloid and interface science open up new pathways for membrane fouling understanding, prevention and control.
Collapse
Affiliation(s)
- Ettore Virga
- Membrane Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Robert W Field
- University of Oxford, Department of Engineering Science, Parks Road, Oxford OX1 3PJ, UK
| | - P M Biesheuvel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Wiebe M de Vos
- Membrane Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
| |
Collapse
|
2
|
Statistical Simulation, a Tool for the Process Optimization of Oily Wastewater by Crossflow Ultrafiltration. MEMBRANES 2022; 12:membranes12070676. [PMID: 35877879 PMCID: PMC9317332 DOI: 10.3390/membranes12070676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
This work aims to determine the optimized ultrafiltration conditions for industrial wastewater treatment loaded with oil and heavy metals generated from an electroplating industry for water reuse in the industrial process. A ceramic multitubular membrane was used for the almost total retention of oil and turbidity, and the high removal of heavy metals such as Pb, Zn, and Cu (>95%) was also applied. The interactive effects of the initial oil concentration (19−117 g/L), feed temperature (20−60 °C), and applied transmembrane pressure (2−5 bar) on the chemical oxygen demand removal (RCOD) and permeate flux (Jw) were investigated. A Box−Behnken experimental design (BBD) for response surface methodology (RSM) was used for the statistical analysis, modelling, and optimization of operating conditions. The analysis of variance (ANOVA) results showed that the COD removal and permeate flux were significant since they showed good correlation coefficients of 0.985 and 0.901, respectively. Mathematical modelling revealed that the best conditions were an initial oil concentration of 117 g/L and a feed temperature of 60 °C, under a transmembrane pressure of 3.5 bar. In addition, the effect of the concentration under the optimized conditions was studied. It was found that the maximum volume concentrating factor (VCF) value was equal to five and that the pollutant retention was independent of the VCF. The fouling mechanism was estimated by applying Hermia’s model. The results indicated that the membrane fouling given by the decline in the permeate flux over time could be described by the cake filtration model. Finally, the efficiency of the membrane regeneration was proved by determining the water permeability after the chemical cleaning process.
Collapse
|
3
|
Application of Capillary Polypropylene Membranes for Microfiltration of Oily Wastewaters: Experiments and Modeling. FIBERS 2021. [DOI: 10.3390/fib9060035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oily wastewaters are considered as one of the most dangerous types of environmental pollution. In the present study, the microfiltration (MF) process of model emulsions and real oily wastewaters was investigated. For this purpose, capillary polypropylene (PP) membranes were used. The experiments were conducted under transmembrane pressure (TMP) and feed flow rate (VF) equal to 0.05 MPa and 0.5 m/s, respectively. It was found that the used membranes ensured a high-quality permeate with turbidity equal to about 0.4 NTU and oil concentration of 7–15 mg/L. As expected, a significant decrease in the MF process performance was noted. However, it is shown that the initial decline of permeate flux could be slightly increased by increasing the feed temperature from 25 °C to 50 °C. Furthermore, Hermia’s models were used to interpret the fouling phenomenon occurring in studied experiments. It was determined that cake formation was the dominant fouling mechanism during filtration of both synthetic and real feeds. Through detailed studies, we present different efficient methods of membrane cleaning. Results, so far, are very encouraging and may have an important impact on increasing the use of polypropylene MF membranes in oily wastewater treatments.
Collapse
|
4
|
Effect of Membrane Materials and Operational Parameters on Performance and Energy Consumption of Oil/Water Emulsion Filtration. MEMBRANES 2021; 11:membranes11050370. [PMID: 34069360 PMCID: PMC8158739 DOI: 10.3390/membranes11050370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
Membrane technology is one of reliable options for treatment of oil/water emulsion. It is highly attractive because of its effectiveness in separating fine oil droplets of <2 µm sizes, which is highly challenging for other processes. However, the progress for its widespread implementations is still highly restricted by membrane fouling. Most of the earlier studies have demonstrated the promise of achieving more sustained filtration via membrane material developments. This study addresses issues beyond membrane development by assessing the impact of membrane material (blend of polysulfone, PSF and polyethylene glycol, PEG), operational pressure, and crude oil concentration on the filtration performance of oil/water emulsion. The filtration data were then used to project the pumping energy for a full-scale system. Results show that fouling resistant membrane offered high oil/water emulsion permeability, which translated into a low energy consumption. The oil/water emulsion permeability was improved by three-fold from 45 ± 0 to 139 ± 1 L/(m2 h bar) for PSF/PEG-0 membrane in comparison to the most optimum one of PSF/PEG-60. It corresponded to an energy saving of up to ~66%. The pumping energy could further be reduced from 27.0 to 7.6 Wh/m3 by operation under ultra-low pressure from 0.2 to 0.05 bar. Sustainable permeability could be achieved when treating 1000 ppm oil/water emulsion, but severe membrane fouling was observed when treating emulsion containing crude oils of >3000 ppm to a point of no flux.
Collapse
|
5
|
Tomczak W, Gryta M. Application of ultrafiltration ceramic membrane for separation of oily wastewater generated by maritime transportation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Katagiri N, Tomimatsu K, Date K, Iritani E. Yeast Cell Cake Characterization in Alcohol Solution for Efficient Microfiltration. MEMBRANES 2021; 11:membranes11020089. [PMID: 33513956 PMCID: PMC7911461 DOI: 10.3390/membranes11020089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/05/2022]
Abstract
Microfiltration is widely used to remove microbial cells from the fermentation broth in the downstream processing of biotechnological products. Because filtration behaviors are strongly affected by the characteristics of the microbial cell cake formed on the surface of the membrane, insights into the cake structure facilitate the design and operation of filter equipment and membranes. In the alcohol fermentation process using a yeast strain, the cake characteristics are considered to be complicated because yeast cells are strongly influenced by external factors such as filtration pressure and alcohol concentration. In this study, we evaluated the membrane filtration properties, in particular the cake characteristics of a yeast suspension containing alcohol. Microfiltration experiments were performed in the dead-end filtration mode using yeast suspensions with several ethanol concentrations (0–20 wt%) under constant pressure. Flux decline behaviors caused by yeast cake were put in a similar form for 0–15 wt% ethanol concentrations. In contrast, a severe flux decline was observed for the suspension with 20 wt% ethanol concentration. It was also observed that in the membrane filtration of yeast cells with 20 wt% ethanol concentration, the cake structure became denser and the filtration resistance remarkably increased because of cellular destruction. Furthermore, the yeast cake exhibited a high compressibility in the solution containing a 20 wt% ethanol concentration. Therefore, the filtration rate of the alcoholic fermentation broth is not significantly improved by increased pressure due to the increase in the cake resistance.
Collapse
Affiliation(s)
- Nobuyuki Katagiri
- Department of Environmental Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
- Correspondence: ; Tel.: +81-52-838-2368
| | - Keisuke Tomimatsu
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (K.T.); (K.D.); (E.I.)
| | - Keiichi Date
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (K.T.); (K.D.); (E.I.)
| | - Eiji Iritani
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (K.T.); (K.D.); (E.I.)
| |
Collapse
|
7
|
Tummons E, Han Q, Tanudjaja HJ, Hejase CA, Chew JW, Tarabara VV. Membrane fouling by emulsified oil: A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116919] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Adib H, Raisi A. Post-synthesis modification of polyethersulfone membrane by grafting hyperbranched polyethylene glycol for oily wastewater treatment. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04148-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Support vector machine-based modeling of grafting hyperbranched polyethylene glycol on polyethersulfone ultrafiltration membrane for separation of oil–water emulsion. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03931-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Iritani E, Katagiri N, Yamaoka Y. Filtration behaviors of suspension of dual-sized submicron particles through semi-permeable microfiltration membrane. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2017.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Ahmad T, Guria C, Mandal A. Optimal synthesis and operation of low-cost polyvinyl chloride/bentonite ultrafiltration membranes for the purification of oilfield produced water. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
The effect of carboxyl multiwalled carbon nanotubes content on the structure and performance of polysulfone membranes for oil sands process-affected water treatment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Effect of cross-flow velocity, oil concentration and salinity on the critical flux of an oil-in-water emulsion in microfiltration. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.02.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Shamsuddin N, Das DB, Starov VM. Membrane-Based Point-Of-Use Water Treatment (PoUWT) System in Emergency Situations. SEPARATION AND PURIFICATION REVIEWS 2014. [DOI: 10.1080/15422119.2014.973967] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Wang L, Pan K, Li L, Cao B. Surface Hydrophilicity and Structure of Hydrophilic Modified PVDF Membrane by Nonsolvent Induced Phase Separation and Their Effect on Oil/Water Separation Performance. Ind Eng Chem Res 2014. [DOI: 10.1021/ie4042388] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lei Wang
- Key
Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| | - Kai Pan
- Key
Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
- Department
of Materials Science and Engineering, Cornell University, Ithaca, 14853, New York, United States
| | - Li Li
- Department
of Materials Science and Engineering, Cornell University, Ithaca, 14853, New York, United States
| | - Bing Cao
- Key
Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
| |
Collapse
|