1
|
Liu S, Lyu Y, Yu S, Cheng J, Zhou J. Efficient Production of Orientin and Vitexin from Luteolin and Apigenin Using Coupled Catalysis of Glycosyltransferase and Sucrose Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6578-6587. [PMID: 34061537 DOI: 10.1021/acs.jafc.1c00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Orientin and vitexin are flavone 8-C-glycosides that exhibit many biological characteristics. This study aimed to establish a two-enzyme-coupled catalytic strategy to enhance the biosynthesis of orientin and vitexin from apigenin and luteolin, respectively. The C-glucosyltransferase (TcCGT1) gene from Trollius chinensis was cloned and expressed in Escherichia coli BL21(DE3). The optimal activity of TcCGT1 was achieved at pH 9.0 and 37 °C. TcCGT1 was relatively stable over the pH range of 7.0-10.0 at a temperature lower than 45 °C. The coupled catalytic strategy of TcCGT1 and different sucrose synthases was adopted to enhance the production of orientin and vitexin. By optimizing the coupling reaction conditions, orientin and vitexin production successfully achieved 2324.4 and 5524.1 mg/L with a yield of 91.4 and 89.3% (mol/mol), respectively. The coupled catalytic strategy proposed in this study might serve as a promising candidate for the large-scale production of orientin and vitexin in the future.
Collapse
Affiliation(s)
- Shike Liu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jie Cheng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
3
|
Chen F, Zhang Q, Liu J, Gu H, Yang L. An efficient approach for the extraction of orientin and vitexin from Trollius chinensis flowers using ultrasonic circulating technique. ULTRASONICS SONOCHEMISTRY 2017; 37:267-278. [PMID: 28427633 DOI: 10.1016/j.ultsonch.2017.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 06/07/2023]
Abstract
Ultrasonic circulating extraction (UCE) approach was developed for effective extraction of orientin and vitexin from the flowers of Trollius chinensis successfully. In this study, some parameters potentially influencing the yields of orientin and vitexin were systematically investigated and optimized by Plackett-Burman and Box-Behnken design, and the optimum operational conditions obtained were 60% ethanol volume fraction, 1000r/min stirring speed, 30°C temperature, 28min ultrasonic irradiation time, 10mL/g liquid-solid ratio and 738W ultrasonic irradiation power. Satisfactory yields of orientin (6.05±0.19mg/g) and vitexin (0.96±0.03mg/g) were obtained in a relatively shorter extraction time under the derived optimum conditions, compared to other ultrasonic extraction methods and heat extraction methods. The mechanism of UCE procedure was discussed in detail, to illustrate the advantage of UCE in the extraction process. In addition, no degradation of orientin and vitexin and high reproducibility of the developed UCE method were observed under the optimum conditions. The proposed UCE technique with high-capacity and circulation function is a rapid and efficient sample extraction technique, and performs promising in large-scale sample preparation.
Collapse
Affiliation(s)
- Fengli Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qiang Zhang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Junling Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Huiyan Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lei Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|