1
|
Ji C, Ma Y, Xie Y, Guo J, Ba H, Zhou Z, Zhao K, Yang M, He X, Zheng W. Isolation and purification of carbohydrate components in functional food: a review. RSC Adv 2024; 14:23204-23214. [PMID: 39045398 PMCID: PMC11265275 DOI: 10.1039/d4ra02748e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024] Open
Abstract
Medicinal plants, increasingly utilized in functional foods, possess potent therapeutic properties and health-promoting functions, with carbohydrates playing a crucial role and exhibiting a range of effects, such as antioxidant, antitumor, immune-enhancing, antibacterial, anticoagulant, and hypoglycemic activities. However, comprehensively, accurately, rapidly, and economically assessing the quality of carbohydrate components is challenging due to their diverse and complex nature. Additionally, the purification and identification of carbohydrates also guarantee related efficacy research. This paper offers a thorough review of research progress carried out by both domestic and international scholars in the last decade on extracting, purifying, separating, identifying, and determining the content of carbohydrate components from functional foods, which are mainly composed of medicinal plants, and also explores the potential for achieving comprehensive quantitative analysis and evaluating structure-activity relationships of carbohydrate components. These findings aim to serve as a valuable reference for the future development and application of natural carbohydrate components in functional food and medicine.
Collapse
Affiliation(s)
- Chao Ji
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Ying Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Yuxin Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Junli Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Haoran Ba
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Zheng Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
| | - Kongxiang Zhao
- The Animal, Plant & Foodstuff Inspection Center of Tianjin Customs Tianjin 300387 China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
| | - Xiahong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, National Engineering Research Center for Applied Technology of Agricultural Biodiversity, College of Plant Protection, Yunnan Agricultural University Kunming Yunnan 650201 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| | - Wenjie Zheng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University Tianjin 300387 China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Southwest Forestry University Kunming Yunnan 650224 China
| |
Collapse
|
2
|
Cao DQ, Liu XD, Han JL, Zhang WY, Hao XD, Iritani E, Katagiri N. Recovery of Extracellular Polymeric Substances from Excess Sludge Using High-Flux Electrospun Nanofiber Membranes. MEMBRANES 2023; 13:74. [PMID: 36676881 PMCID: PMC9862183 DOI: 10.3390/membranes13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The recycling of extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has received increasing attention in recent years. Although membrane separation has great potential for use in EPS concentration and recovery, conventional membranes tend to exhibit low water flux and high energy consumption. Herein, electrospun nanofiber membranes (ENMs) were fabricated using polyvinylidene fluoride (PVDF) and used for the recovery of EPSs extracted from the excess sludge using the cation exchange resin (CER) method. The fabricated ENM containing 14 wt.% PVDF showed excellent properties, with a high average water flux (376.8 L/(m2·h)) and an excellent EPS recovery rate (94.1%) in the dead-end filtration of a 1.0 g/L EPS solution at 20 kPa. The ENMs displayed excellent mechanical strength, antifouling properties, and high reusability after five recycles. The filtration pressure had a negligible effect on the average EPS recovery rate and water flux. The novel dead-end filtration with an EPS filter cake on the ENM surface was effective in removing heavy-metal ions, with the removal rates of Pb2+, Cu2+, and Cr6+ being 89.5%, 73.5%, and 74.6%, respectively. These results indicate the potential of nanofiber membranes for use in effective concentration and recycling of EPSs via membrane separation.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiao-Dan Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jia-Lin Han
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Eiji Iritani
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nobuyuki Katagiri
- Department of Environmental Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| |
Collapse
|
3
|
Xiao H, Wang Y, Hao B, Cao Y, Cui Y, Huang X, Shi B. Collagen Fiber-Based Advanced Separation Materials: Recent Developments and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107891. [PMID: 34894376 DOI: 10.1002/adma.202107891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Separation plays a critical role in a broad range of industrial applications. Developing advanced separation materials is of great significance for the future development of separation technology. Collagen fibers (CFs), the typical structural proteins, exhibit unique structural hierarchy, amphiphilic wettability, and versatile chemical reactivity. These distinctive properties provide infinite possibilities for the rational design of advanced separation materials. During the past 2 decades, many progressive achievements in the development of CFs-derived advanced separation materials have been witnessed already. Herein, the CFs-based separation materials are focused on and the recent progresses in this topic are reviewed. CFs widely existing in animal skins display unique hierarchically fibrous structure, amphiphilicity-enabled surface wetting behaviors, multi-functionality guaranteed covalent/non-covalent reaction versatility. These outstanding merits of CFs bring great opportunities for realizing rational design of a variety of advanced separation materials that were capable of achieving high-performance separations to diverse specific targets, including oily pollutants, natural products, metal ions, anionic contaminants and proteins, etc. Besides, the important issues for the further development of CFs-based advanced separation materials are also discussed.
Collapse
Affiliation(s)
- Hanzhong Xiao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Wang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Baicun Hao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiran Cao
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yiwen Cui
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Huang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Bi Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, P. R. China
- Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
4
|
Zhang K, Wu HH, Huo HQ, Ji YL, Zhou Y, Gao CJ. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Wu D, Lu H, Zhang X, Shen C, Lü T, Liu X, Yu S. Tailoring interfacially polymerized thin-film composite polyesteramide nanofiltration membranes based on carboxylated chitosan and trimesoyl chloride for salt separation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Oliveira MGD, Forte MBS, Franco TT. A serial membrane-based process for fractionation of xylooligosaccharides from sugarcane straw hydrolysate. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Recovery of saccharides from lignocellulosic hydrolysates using nanofiltration membranes: A review. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|