1
|
Chen Z, Shu C, Gan Z, Cao J, Qiu P, Sun X, Deng C, Wu Y, Tang W. Research Progress and Perspectives on Anti-Poisoning Hydrogen Oxidation Reaction Electrocatalysts for Hydrogen Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411049. [PMID: 39757417 DOI: 10.1002/smll.202411049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Indexed: 01/07/2025]
Abstract
As global demand for clean and sustainable energy continues to rise, fuel cell technology has seen rapid advancement. However, the presence of trace impurities like carbon monoxide (CO) and hydrogen sulfide (H₂S) in hydrogen fuel can significantly deactivate the anode by blocking its active sites, leading to reduced performance. Developing electrocatalysts that are resistant to CO and H₂S poisoning has therefore become a critical priority. This paper provides a comprehensive analysis of the poisoning mechanisms of CO and H₂S and reviews the key strategies developed over the past few decades to enhance the impurity tolerance of anode electrocatalysts. It begins by examining the differences in hydrogen oxidation reaction (HOR) mechanisms in acidic and alkaline environments, focusing on the roles of hydrogen binding energy (HBE) and hydroxide binding energy (OHBE). Next, it outlines three main approaches to mitigate CO poisoning: (I) bifunctional mechanisms, (II) direct mechanisms, and (III) constructing protective blocking layers. The review then shifts to strategies for countering H₂S poisoning, emphasizing both electrocatalyst design and structural improvements in fuel cells. Finally, the paper highlights recent advances in anti-poisoning electrocatalysts, discusses their applications and limitations, and identifies the key challenges and future opportunities for further research in this field.
Collapse
Affiliation(s)
- Zhixu Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chengyong Shu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhuofan Gan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jingwen Cao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peixi Qiu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaohui Sun
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power Sources, Shanghai, 200245, P. R. China
| | - Chengwei Deng
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power Sources, Shanghai, 200245, P. R. China
| | - Yuping Wu
- School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Wei Tang
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
2
|
Fraga Alvarez DV, Lin Z, Shi Z, Baxter AF, Wang ED, Kuvar D, Mahmud N, El-Naas MH, Abruña HD, Muller DA, Esposito DV. Condensed Layer Deposition of Nanoscopic TiO 2 Overlayers on High-Surface-Area Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688003 DOI: 10.1021/acsami.3c18366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Encapsulating an electrocatalytic material with a semipermeable, nanoscopic oxide overlayer offers a promising approach to enhancing its stability, activity, and/or selectivity compared to an unencapsulated electrocatalyst. However, applying nanoscopic oxide encapsulation layers to high-surface-area electrodes such as nanoparticle-supported porous electrodes is a challenging task. This study demonstrates that the recently developed condensed layer deposition (CLD) method can be used for depositing nanoscopic (sub-10 nm thick) titanium dioxide (TiO2) overlayers onto high-surface-area platinized carbon foam electrodes. Characterization of the overlayers by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) showed that the films are amorphous, while X-ray photoelectron spectroscopy confirmed that they exhibit TiO2 stoichiometry. Electrodes were also characterized by hydrogen underpotential deposition (Hupd) and carbon monoxide (CO) stripping, demonstrating that the Pt electrocatalysts remain electrochemically active after encapsulation. Additionally, copper underpotential deposition (Cuupd) measurements revealed that TiO2 overlayers are effective at blocking Cu2+ from reaching the TiO2/Pt buried interface and were used to estimate that between 43 and 98% of Pt surface sites were encapsulated. Overall, this study shows that CLD is a promising approach for depositing nanoscopic protective overlayers on high-surface-area electrodes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nafis Mahmud
- Gas Processing Center, Qatar University, P.O. Box 2713, Al Tarfa Street, Doha , Qatar
| | - Muftah H El-Naas
- Gas Processing Center, Qatar University, P.O. Box 2713, Al Tarfa Street, Doha , Qatar
| | | | | | | |
Collapse
|
3
|
Meyer Q, Yang C, Cheng Y, Zhao C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-023-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractProton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 °C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.
Collapse
|
4
|
Belenov S, Nevelskaya A, Nikulin A, Tolstunov M. The Effect of Pretreatment on a PtCu/C Catalyst's Structure and Functional Characteristics. Int J Mol Sci 2023; 24:ijms24032177. [PMID: 36768501 PMCID: PMC9916518 DOI: 10.3390/ijms24032177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
This research focuses on studying the effects of various pretreatment types on a PtCu/C catalyst synthesized by the co-deposition of metal precursors. The treatment in a 1 M HNO3 solution for 1 h is shown to result in a slight increase in activity in the oxygen electroreduction reaction (both the mass activity and specific activity calculated for the value of the electrochemically active surface area). The sample obtained after the thermal treatment, which is carried out at 350 °C under an argon atmosphere for 1 h, demonstrates 1.7 times higher specific activity than the sample before the treatment. The durability testing results obtained by the stress testing method in a potential range of 0.6-1.4 V during 2000 cycles show that the PtCu/C catalysts after both the acid treatment and the thermal treatment are characterized by higher residual activity than the sample in the "as-prepared" state.
Collapse
Affiliation(s)
- Sergey Belenov
- Chemistry Faculty, Southern Federal University, 7 Zorge St, 344090 Rostov-on-Don, Russia
- Prometheus R&D LLC, 4g/36 Zhmaylova St, 344091 Rostov-on-Don, Russia
- Correspondence:
| | - Alina Nevelskaya
- Chemistry Faculty, Southern Federal University, 7 Zorge St, 344090 Rostov-on-Don, Russia
| | - Alexey Nikulin
- Chemistry Faculty, Southern Federal University, 7 Zorge St, 344090 Rostov-on-Don, Russia
- Federal State Budgetary Institution of Science “Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences” (SSC RAS), St. Chehova, 41, 344006 Rostov-on-Don, Russia
| | - Mikhail Tolstunov
- Chemistry Faculty, Southern Federal University, 7 Zorge St, 344090 Rostov-on-Don, Russia
- Federal State Budgetary Institution of Science “Federal Research Centre The Southern Scientific Centre of the Russian Academy of Sciences” (SSC RAS), St. Chehova, 41, 344006 Rostov-on-Don, Russia
| |
Collapse
|
5
|
Li Q, Zhu H, Chen X, Liu H, Ren Y, Chen Y, Ohara K, Zhou L, Chen J, Deng J, Miao J, Lin K, Kuang X, Xing X. Local Structure Insight into Hydrogen Evolution Reaction with Bimetal Nanocatalysts. J Am Chem Soc 2022; 144:20298-20305. [DOI: 10.1021/jacs.2c07844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - He Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Koji Ohara
- SPring-8, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5148, Japan
| | - Lihui Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaojun Kuang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Zhang J, Zhao J, Jin C, Chen Z, Liu J. Self-Strained Platinum Clusters with Finite Size: High-Performance Catalysts with CO Tolerance for PEMFCs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30692-30703. [PMID: 35767898 DOI: 10.1021/acsami.2c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strained platinum-based materials with high performance have been regarded as the most promising electrocatalysts for proton exchange membrane fuel cells (PEMFCs) recently. Herein, self-strained platinum clusters with finite size (about 1 nm) are prepared by a combining liquid- and solid-phase UV irradiation cycle strategy. It started with a fresh H2PtCl6 solution irradiated by UV light and then mixed with a graphitized carbon, followed by the dried mixture being subjected to UV light to generate monodispersed Pt clusters on the carbon surface. The obtained platinum clusters feature narrower size distribution and higher loading on carbon, exhibiting significantly improved activity and durability, much higher than that of the-state-of-art commercial Pt/C for the oxygen reduction reaction. More importantly, the self-strained Pt clusters display a surprising CO tolerance, which can be attributed to the unique adaptive lattice compressive strain that triggers an electron enrichment phenomenon for the Pt clusters. Therefore, this stepwise UV irradiation method solves the long-standing problem of both wide size distribution and low loading of metal clusters fabricated by one-step photochemical reduction, providing a potential route for the synthesis of other metal clusters with strained structures.
Collapse
Affiliation(s)
- Jingyan Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Zhao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chun Jin
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhiguo Chen
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Jang I, Ahn M, Lee S, Yoo SJ. Surfactant assisted geometric barriers on PtNi@C electrocatalyst for phosphoric acid fuel cells. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Pt-Ni alloy catalyst supported on carbon aerogel via one-step method for oxygen reduction reaction. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05082-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Carbon Monoxide Tolerant Pt-Based Electrocatalysts for H2-PEMFC Applications: Current Progress and Challenges. Catalysts 2021. [DOI: 10.3390/catal11091127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The activity degradation of hydrogen-fed proton exchange membrane fuel cells (H2-PEMFCs) in the presence of even trace amounts of carbon monoxide (CO) in the H2 fuel is among the major drawbacks currently hindering their commercialization. Although significant progress has been made, the development of a practical anode electrocatalyst with both high CO tolerance and stability has still not occurred. Currently, efforts are being devoted to Pt-based electrocatalysts, including (i) alloys developed via novel synthesis methods, (ii) Pt combinations with metal oxides, (iii) core–shell structures, and (iv) surface-modified Pt/C catalysts. Additionally, the prospect of substituting the conventional carbon black support with advanced carbonaceous materials or metal oxides and carbides has been widely explored. In the present review, we provide a brief introduction to the fundamental aspects of CO tolerance, followed by a comprehensive presentation and thorough discussion of the recent strategies applied to enhance the CO tolerance and stability of anode electrocatalysts. The aim is to determine the progress made so far, highlight the most promising state-of-the-art CO-tolerant electrocatalysts, and identify the contributions of the novel strategies and the future challenges.
Collapse
|
10
|
Ding R, Chen Y, Chen P, Wang R, Wang J, Ding Y, Yin W, Liu Y, Li J, Liu J. Machine Learning-Guided Discovery of Underlying Decisive Factors and New Mechanisms for the Design of Nonprecious Metal Electrocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01473] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rui Ding
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yawen Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Ping Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Ran Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Jiankang Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yiqin Ding
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Wenjuan Yin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yide Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Jia Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Jianguo Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|
11
|
Zhu H, Huang Y, Ren J, Zhang B, Ke Y, Jen AK, Zhang Q, Wang X, Liu Q. Bridging Structural Inhomogeneity to Functionality: Pair Distribution Function Methods for Functional Materials Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003534. [PMID: 33747741 PMCID: PMC7967088 DOI: 10.1002/advs.202003534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Indexed: 05/19/2023]
Abstract
The correlation between structure and function lies at the heart of materials science and engineering. Especially, modern functional materials usually contain inhomogeneities at an atomic level, endowing them with interesting properties regarding electrons, phonons, and magnetic moments. Over the past few decades, many of the key developments in functional materials have been driven by the rapid advances in short-range crystallographic techniques. Among them, pair distribution function (PDF) technique, capable of utilizing the entire Bragg and diffuse scattering signals, stands out as a powerful tool for detecting local structure away from average. With the advent of synchrotron X-rays, spallation neutrons, and advanced computing power, the PDF can quantitatively encode a local structure and in turn guide atomic-scale engineering in the functional materials. Here, the PDF investigations in a range of functional materials are reviewed, including ferroelectrics/thermoelectrics, colossal magnetoresistance (CMR) magnets, high-temperature superconductors (HTSC), quantum dots (QDs), nano-catalysts, and energy storage materials, where the links between functions and structural inhomogeneities are prominent. For each application, a brief description of the structure-function coupling will be given, followed by selected cases of PDF investigations. Before that, an overview of the theory, methodology, and unique power of the PDF method will be also presented.
Collapse
Affiliation(s)
- He Zhu
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Yalan Huang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Jincan Ren
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Binghao Zhang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
| | - Yubin Ke
- China Spallation Neutron SourceInstitute of High Energy PhysicsChinese Academy of ScienceDongguan523000P. R. China
| | - Alex K.‐Y. Jen
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong999077P. R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084P. R. China
| | - Xun‐Li Wang
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| | - Qi Liu
- Department of PhysicsCity University of Hong KongHong Kong999077P. R. China
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
12
|
Wang H, Wu J, Xiao Z, Ma Z, Li P, Zhang X, Li H, Fang X. Sulfidation of MoO 3/γ-Al 2O 3 towards a highly efficient catalyst for CH 4 reforming with H 2S. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02226h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural evolution of MoO3/γ-Al2O3 during sulfidation and a subsequent CH4/H2S reforming reaction is revealed, and the structure–performance relationships are established.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jingxian Wu
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhihuang Xiao
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhejie Ma
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ping Li
- State Key Laboratory of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xinwei Zhang
- Dalian Petrochemical Research Institute
- SINOPEC
- Dalian 116045
- China
| | - Hongying Li
- Dalian Petrochemical Research Institute
- SINOPEC
- Dalian 116045
- China
| | - Xiangchen Fang
- Dalian Petrochemical Research Institute
- SINOPEC
- Dalian 116045
- China
| |
Collapse
|
13
|
|
14
|
Zhao P, Qin X, Li H, Qu K, Li R. New insights into O and OH adsorption on the Pt-Co alloy surface: effects of Pt/Co ratios and structures. Phys Chem Chem Phys 2020; 22:21124-21130. [PMID: 32955059 DOI: 10.1039/d0cp02746d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the electronic structure and adsorption properties of O and OH for a series of Pt-Co alloys with different Pt/Co ratios (5 : 1, 2 : 1, 1 : 1, 1 : 2, and 1 : 5) were systematically studied using density functional theory calculations. Our computational results demonstrated that the introduced Co atoms have multiple effects on the surface electronic structure in different atomic layers of the alloy, leading to the discrepancies in the electronic structure between Pt-skin structures and non-Pt-skin structures. Moreover, the influence of the surface electronic structure on the adsorption of O and OH slightly differs. Indeed, the adsorption of O is more remarkably affected by the Pt/Co ratio than the OH adsorption and better follows the d-band center theory. Due to the difference of the alloy structure and the effect of different layer Co atoms, the adsorption of O and OH on the alloy configurations with the same Pt/Co ratio has different outcomes. Our results suggested that the oxygen reduction reaction (ORR) activity is related not only to the Pt/Co ratio of alloy surfaces but also to the specific surface structure. Our research can provide theoretical insights into the development of ORR catalysts.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Chemistry, Liaocheng University, Liaocheng 252000, China.
| | | | | | | | | |
Collapse
|
15
|
Adam N, Schlicht S, Han Y, Bechelany M, Bachmann J, Perner M. Metagenomics Meets Electrochemistry: Utilizing the Huge Catalytic Potential From the Uncultured Microbial Majority for Energy-Storage. Front Bioeng Biotechnol 2020; 8:567. [PMID: 32582677 PMCID: PMC7287016 DOI: 10.3389/fbioe.2020.00567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/11/2020] [Indexed: 11/25/2022] Open
Abstract
Hydrogen can in the future serve as an advantageous carrier of renewable energy if its production via water electrolysis and utilization in fuel cells are realized with high energy efficiency and non-precious electrocatalysts. In an unprecedented novel combination of structured electrodes with hydrogen converting enzymes from the uncultured and thus largely inaccessible microbial majority (>99%) we address this challenge. The geometrically defined electrodes with large specific surface area allow for low overpotentials and high energy efficiencies to be achieved. Enzymatic hydrogen evolution electrocatalysts are used as alternatives to noble metals. The enzymes are harnessed from the environmental microbial DNA (metagenomes) of hydrothermal vents exhibiting dynamic hydrogen and oxygen concentrations and are recovered via a recently developed novel activity-based screening tool. The screen enables us to target currently unrecognized hydrogenase enzymes from metagenomes via direct expression in a surrogate host microorganism. This circumvents the need for cultivation of the source organisms, the primary bottleneck when harnessing enzymes from microbes. One hydrogen converting metagenome-derived enzyme exhibited high activity and unusually high stability when dispersed on a TiO2-coated polyacrylonitrile fiber electrode. Our results highlight the tremendous potential of enzymes derived from uncultured microorganisms for applications in energy conversion and storage technologies.
Collapse
Affiliation(s)
- Nicole Adam
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Stefanie Schlicht
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, Interdisciplinary Center for Nanostructured Films (IZNF), Erlangen, Germany
| | - Yuchen Han
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM – UMR 5635, ENSCM, CNRS, Univ Montpellier, Montpellier, France
| | - Julien Bachmann
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, Interdisciplinary Center for Nanostructured Films (IZNF), Erlangen, Germany
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy Prospekt, St. Petersburg, Russia
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| |
Collapse
|
16
|
Lin R, Che L, Shen D, Cai X. High durability of Pt-Ni-Ir/C ternary catalyst of PEMFC by stepwise reduction synthesis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135251] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Cyril PH, Saravanan G. Development of advanced materials for cleaner energy generation through fuel cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj03746j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of fuel cells in the transportation sector holds promise as a sustainable option for the generation of cleaner energy along with cumulative lesser GHG emissions.
Collapse
Affiliation(s)
- Priscilla Hyacinth Cyril
- Chennai Zonal Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), CSIR-Madras Complex
- Chennai-600 113
- India
| | - Govindachetty Saravanan
- Chennai Zonal Centre, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), CSIR-Madras Complex
- Chennai-600 113
- India
| |
Collapse
|
18
|
Trindell JA, Duan Z, Henkelman G, Crooks RM. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem Rev 2019; 120:814-850. [DOI: 10.1021/acs.chemrev.9b00246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie A. Trindell
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhiyao Duan
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
19
|
An Investigation of Direct Hydrocarbon (Propane) Fuel Cell Performance Using Mathematical Modeling. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY 2018. [DOI: 10.1155/2018/5919874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An improved mathematical model was used to extend polarization curves for direct propane fuel cells (DPFCs) to larger current densities than could be obtained with any of the previous models. DPFC performance was then evaluated using eleven different variables. The variables related to transport phenomena had little effect on DPFC polarization curves. The variables that had the greatest influence on DPFC polarization curves were all related to reaction rate phenomena. Reaction rate phenomena were dominant over the entire DPFC polarization curve up to 100 mA/cm2, which is a value that approaches the limiting current densities of DPFCs. Previously it was known that DPFCs are much different than hydrogen proton exchange membrane fuel cells (PEMFCs). This is the first work to show the reason for that difference. Reaction rate phenomena are dominant in DPFCs up to the limiting current density. In contrast the dominant phenomenon in hydrogen PEMFCs changes from reaction rate phenomena to proton migration through the electrolyte and to gas diffusion at the cathode as the current density increases up to the limiting current density.
Collapse
|
20
|
Varambhia A, Jones L, London A, Ozkaya D, Nellist PD, Lozano-Perez S. Determining EDS and EELS partial cross-sections from multiple calibration standards to accurately quantify bi-metallic nanoparticles using STEM. Micron 2018; 113:69-82. [DOI: 10.1016/j.micron.2018.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 11/15/2022]
|
21
|
Naitabdi A, Boucly A, Rochet F, Fagiewicz R, Olivieri G, Bournel F, Benbalagh R, Sirotti F, Gallet JJ. CO oxidation activity of Pt, Zn and ZnPt nanocatalysts: a comparative study by in situ near-ambient pressure X-ray photoelectron spectroscopy. NANOSCALE 2018; 10:6566-6580. [PMID: 29577122 DOI: 10.1039/c7nr07981h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The investigation of nanocatalysts under ambient pressure by X-ray photoelectron spectroscopy gives access to a wealth of information on their chemical state under reaction conditions. Considering the paradigmatic CO oxidation reaction, a strong synergistic effect on CO catalytic oxidation was recently observed on a partly dewetted ZnO(0001)/Pt(111) single crystal surface. In order to bridge the material gap, we have examined whether this inverse metal/oxide catalytic effect could be transposed on supported ZnPt nanocatalysts deposited on rutile TiO2(110). Synchrotron radiation near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) operated at 1 mbar of O2 : CO mixture (4 : 1) was used at a temperature range between room temperature and 450 K. To tackle the complexity of the problem, we have also studied the catalytic activity of nanoparticles (NPs) of the same size, consisting of pure Pt and Zn nanoparticles (NPs), for which, moreover, NAP-XPS studies are a novelty. The comparative approach shows that the CO oxidation process is markedly different for the pure Pt and pure Zn NPs. For pure Pt NPs, CO poisoned the metallic surfaces at low temperature at the onset of CO2 evolution. In contrast, the pure Zn NPs first oxidize into ZnO, and trap carbonates at low temperature. Then they start to release CO2 in the gas phase, at a critical temperature, while continuously producing it. The pure Zn NPs are also immune to support encapsulation. The bimetallic nanoparticle borrows some of its characteristics from its two parent metals. In fact, the ZnPt NP, although produced by the sequential deposition of platinum and zinc, is platinum-terminated below the temperature onset of CO oxidation and poisoned by CO. Above the CO oxidation onset, the nanoparticle becomes Zn-rich with a ZnO shell. Pure Pt and ZnPt NPs present a very similar activity towards CO oxidation, in contrast with what is reported in a single crystal study. The present study demonstrates the effectiveness of NAP-XPS in the study of complex catalytic processes at work on nanocatalysts under near-ambient pressures, and highlights once more the difficulty of transposing single crystal surface observations to the case of nanoobjects.
Collapse
Affiliation(s)
- Ahmed Naitabdi
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, 4 place Jussieu, 75005 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Electroless Synthesis of Highly Stable and Free-Standing Porous Pt Nanotube Networks and their Application in Methanol Oxidation. ChemElectroChem 2018. [DOI: 10.1002/celc.201701271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Gallo IBC, Carbonio EA, Villullas HM. What Determines Electrochemical Surface Processes on Carbon-Supported PdAu Nanoparticles? ACS Catal 2018. [DOI: 10.1021/acscatal.7b03734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Irã B. C. Gallo
- Universidade Estadual Paulista (UNESP), Instituto de
Química, Araraquara, 14800-060 Sao Paulo, Brazil
| | - Emilia A. Carbonio
- Helmholtz-Zentrum Berlin für Materialien und Energie, BESSY-II, Albert-Einstein-Straße
15, 12489 Berlin, Germany
| | - Hebe M. Villullas
- Universidade Estadual Paulista (UNESP), Instituto de
Química, Araraquara, 14800-060 Sao Paulo, Brazil
| |
Collapse
|
24
|
Electrochemical and Morphological Investigations of Ga Addition to Pt Electrocatalyst Supported on Carbon. ScientificWorldJournal 2017; 2017:8786013. [PMID: 28466065 PMCID: PMC5390673 DOI: 10.1155/2017/8786013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/23/2017] [Indexed: 11/21/2022] Open
Abstract
This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C.
Collapse
|
25
|
MacArthur KE, Slater TJA, Haigh SJ, Ozkaya D, Nellist PD, Lozano-Perez S. Quantitative Energy-Dispersive X-Ray Analysis of Catalyst Nanoparticles Using a Partial Cross Section Approach. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:71-81. [PMID: 26754480 DOI: 10.1017/s1431927615015494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The new generation of energy-dispersive X-ray (EDX) detectors with higher count rates than ever before, paves the way for a new approach to quantitative elemental analysis in the scanning transmission electron microscope. Here we demonstrate a method of calculating partial cross sections for use in quantifying EDX data, beneficial especially because of the simplicity of its implementation. Applying this approach to acid-leached PtCo catalyst nanoparticles leads to quantitative determination of the Pt surface enrichment.
Collapse
Affiliation(s)
| | - Thomas J A Slater
- 2Materials Science Centre,University of Manchester,Manchester M13 9PL,UK
| | - Sarah J Haigh
- 2Materials Science Centre,University of Manchester,Manchester M13 9PL,UK
| | - Dogan Ozkaya
- 3Johnson Matthey Technology Centre,Blounts Court Road,Sonning Common,Reading RG4 9NH,Reading,UK
| | - Peter D Nellist
- 1Department of Materials,University of Oxford,Parks Road,Oxford OX1 3PH,UK
| | | |
Collapse
|
26
|
Oxidation of Small Supported Platinum-based Nanoparticles Under Near-Ambient Pressure Exposure to Oxygen. Top Catal 2016. [DOI: 10.1007/s11244-015-0529-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Jennings PC, Lysgaard S, Hansen HA, Vegge T. Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis. Phys Chem Chem Phys 2016; 18:24737-45. [DOI: 10.1039/c6cp04194a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ternary Pt–Au–M (M = 3d transition metal) nanoparticles show reduced OH adsorption energies and improved activity for the oxygen reduction reaction (ORR) compared to pure Pt nanoparticles, as obtained by density functional theory.
Collapse
Affiliation(s)
- Paul C. Jennings
- Department of Energy Conversion and Storage
- Technical University of Denmark
- Lyngby
- Denmark
| | - Steen Lysgaard
- Department of Energy Conversion and Storage
- Technical University of Denmark
- Lyngby
- Denmark
| | - Heine A. Hansen
- Department of Energy Conversion and Storage
- Technical University of Denmark
- Lyngby
- Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage
- Technical University of Denmark
- Lyngby
- Denmark
| |
Collapse
|
28
|
Wang YJ, Zhao N, Fang B, Li H, Bi XT, Wang H. Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity. Chem Rev 2015; 115:3433-67. [DOI: 10.1021/cr500519c] [Citation(s) in RCA: 940] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yan-Jie Wang
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC Canada V6T 1Z3
- Vancouver International Clean-Tech Research Institute Inc., 4475 Wayburne Drive, Burnaby, Canada V5G 4X4
| | - Nana Zhao
- Vancouver International Clean-Tech Research Institute Inc., 4475 Wayburne Drive, Burnaby, Canada V5G 4X4
| | - Baizeng Fang
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC Canada V6T 1Z3
| | - Hui Li
- Electrochemical
Materials, Energy, Mining and Environment, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC, Canada V6T 1W5
| | - Xiaotao T. Bi
- Department
of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC Canada V6T 1Z3
| | - Haijiang Wang
- Electrochemical
Materials, Energy, Mining and Environment, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC, Canada V6T 1W5
| |
Collapse
|
29
|
Tse ECM, Gewirth AA. Effect of Temperature and Pressure on the Kinetics of the Oxygen Reduction Reaction. J Phys Chem A 2015; 119:1246-55. [DOI: 10.1021/acs.jpca.5b00572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edmund C. M. Tse
- Department
of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Andrew A. Gewirth
- Department
of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
- International
Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 812-8581, Japan
| |
Collapse
|
30
|
Kim JH, Kwon G, Chun H, Kim YT. Enhancement of Activity and Durability through Cr Doping of TiO2Supports in Pt Electrocatalysts for Oxygen Reduction Reactions. ChemCatChem 2014. [DOI: 10.1002/cctc.201402466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Nickel Alloy Catalysts for the Anode of a High Temperature PEM Direct Propane Fuel Cell. J CHEM-NY 2014. [DOI: 10.1155/2014/151638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High temperature polymer electrode membrane fuel cells that use hydrocarbon as the fuel have many theoretical advantages over those that use hydrogen. For example, nonprecious metal catalysts can replace platinum. In this work, two of the four propane fuel cell reactions, propane dehydrogenation and water dissociation, were examined using nickel alloy catalysts. The adsorption energies of both propane and water decreased as the Fe content of Ni/Fe alloys increased. In contrast, they both increased as the Cu content of Ni/Cu alloys increased. The activation energy for the dehydrogenation of propane (a nonpolar molecule) changed very little, even though the adsorption energy changed substantially as a function of alloy composition. In contrast, the activation energy for dissociation of water (a molecule that can be polarized) decreased markedly as the energy of adsorption decreased. The different relationship between activation energy and adsorption energy for propane dehydrogenation and water dissociation alloys was attributed to propane being a nonpolar molecule and water being a molecule that can be polarized.
Collapse
|
32
|
Zhang C, Yu H, Fu L, Gao Y, Jia J, Jiang S, Yi B, Shao Z. A novel ultra-thin catalyst layer based on wheat ear-like catalysts for polymer electrolyte membrane fuel cells. RSC Adv 2014. [DOI: 10.1039/c4ra09759a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Wheatear-like catalysts were prepared on the Co–OH–CO3 nanowires to design an ultra-thin catalyst layer for fuel cells.
Collapse
Affiliation(s)
- Changkun Zhang
- Fuel Cell System and Engineering Laboratory
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023, PR China
| | - Hongmei Yu
- Fuel Cell System and Engineering Laboratory
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023, PR China
| | - Li Fu
- Fuel Cell System and Engineering Laboratory
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023, PR China
| | - Yuan Gao
- Fuel Cell System and Engineering Laboratory
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023, PR China
| | - Jia Jia
- Fuel Cell System and Engineering Laboratory
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023, PR China
| | - Shangfeng Jiang
- Fuel Cell System and Engineering Laboratory
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023, PR China
| | - Baolian Yi
- Fuel Cell System and Engineering Laboratory
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023, PR China
| | - Zhigang Shao
- Fuel Cell System and Engineering Laboratory
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023, PR China
| |
Collapse
|
33
|
Jennings PC, Aleksandrov HA, Neyman KM, Johnston RL. DFT studies of oxygen dissociation on the 116-atom platinum truncated octahedron particle. Phys Chem Chem Phys 2014; 16:26539-45. [DOI: 10.1039/c4cp02147a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxygen dissociation studies performed on Pt116 nanoparticles highlight the importance of surface flexibility for fast reaction kinetics.
Collapse
Affiliation(s)
- Paul C. Jennings
- School of Chemical Engineering
- University of Birmingham
- Birmingham, UK
| | - Hristiyan A. Aleksandrov
- Departament de Química Física & IQTCUB
- Universitat de Barcelona
- Spain
- Faculty of Chemistry and Pharmacy
- University of Sofia
| | - Konstantin M. Neyman
- Departament de Química Física & IQTCUB
- Universitat de Barcelona
- Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
- Barcelona, Spain
| | | |
Collapse
|