• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4632670)   Today's Articles (1765)   Subscriber (49936)
For: Shah YT, Gardner TH. Dry Reforming of Hydrocarbon Feedstocks. Catalysis Reviews 2014. [DOI: 10.1080/01614940.2014.946848] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Number Cited by Other Article(s)
1
Al-Shafei E, Aljishi M, Alasseel A, Al-ShaikhAli AH, Albahar M. Enhancing CO and H2 Production in Propane Dry Reforming in Excess of CO2. ACS OMEGA 2024;9:17646-17654. [PMID: 38645309 PMCID: PMC11024976 DOI: 10.1021/acsomega.4c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
2
Li Y, Chen M, Jiang L, Tian D, Li K. Perovskites as oxygen storage materials for chemical looping partial oxidation and reforming of methane. Phys Chem Chem Phys 2024;26:1516-1540. [PMID: 38174573 DOI: 10.1039/d3cp04626e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
3
Olivier A, Desgagnés A, Mercier E, Iliuta MC. New Insights on Catalytic Valorization of Carbon Dioxide by Conventional and Intensified Processes. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
4
Kwon H, Kim T, Song S. Dry reforming of methane in a rotating gliding arc plasma: Improving efficiency and syngas cost by quenching product gas. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
5
Al-Shafei E, Aljishi M, Albahar M, Alahmed A, Sanhoob M. Effect of CO2/propane ratio and trimetallic oxide catalysts on maximizing dry reforming of propane. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
6
Selcuk O, Caglayan BS, Avci AK. Ni-catalyzed CO2 glycerol reforming to syngas: New insights on the evaluation of reaction and catalyst performance. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
7
Dharmaraj S, Ashokkumar V, Chew KW, Chia SR, Show PL, Ngamcharussrivichai C. Novel strategy in biohydrogen energy production from COVID - 19 plastic waste: A critical review. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2022;47:42051-42074. [PMID: 34776598 PMCID: PMC8576595 DOI: 10.1016/j.ijhydene.2021.08.236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 06/06/2023]
8
Peng W, Li Z, Liu B, Qiu P, Yan D, Jia L, Li J. Enhanced activity and stability of Ce-doped PrCrO3-supported nickel catalyst for dry reforming of methane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
9
Huang W, Wei C, Li Y, Zhang Y, Lin W. The role of Mo species in Ni-Mo catalysts for dry reforming of methane. Phys Chem Chem Phys 2022;24:21461-21469. [PMID: 36048173 DOI: 10.1039/d2cp02120j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
10
Prospects and Technical Challenges in Hydrogen Production through Dry Reforming of Methane. Catalysts 2022. [DOI: 10.3390/catal12040363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]  Open
11
Pyrolysis Combined with the Dry Reforming of Waste Plastics as a Potential Method for Resource Recovery—A Review of Process Parameters and Catalysts. Catalysts 2022. [DOI: 10.3390/catal12040362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]  Open
12
Abdullah N, Ainirazali N, Setiabudi HD. Recent development in catalyst and reactor design for CO2 reforming of alcohols to syngas: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
13
Alioui O, Badawi M, Erto A, Amin MA, Tirth V, Jeon BH, Islam S, Balsamo M, Virginie M, Ernst B, Benguerba Y. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: a review. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2021.2020518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
14
Yang H, Wang H, Wei L, Yang Y, Li YW, Wen XD, Jiao H. Simple mechanisms of CH4 reforming with CO2 and H2O on a supported Ni/ZrO2 catalyst. Phys Chem Chem Phys 2021;23:26392-26400. [PMID: 34792065 DOI: 10.1039/d1cp04048k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Guharoy U, Reina TR, Liu J, Sun Q, Gu S, Cai Q. A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
16
Structured catalysts with mesoporous nanocomposite active components for transformation of biogas/biofuels into syngas. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
17
Franz R, Pinto D, Uslamin EA, Urakawa A, Pidko EA. Impact of Promoter Addition on the Regeneration of Ni/Al 2 O 3 Dry Reforming Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202101080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
18
Guilhaume N, Bianchi D, Wandawa RA, Yin W, Schuurman Y. Study of CO2 and H2O adsorption competition in the combined dry / steam reforming of biogas. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.04.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
19
Focus on Materials for Sulfur-Resistant Catalysts in the Reforming of Biofuels. Catalysts 2021. [DOI: 10.3390/catal11091029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]  Open
20
State-of-the-art in methane-reforming reactor modeling: challenges and new insights. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
21
Mortensen PM, Rautenbach M. Circumventing carbon formation in CO2 reforming of methane by an adiabatic post conversion reactor. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
22
Alabdullah M, Ibrahim M, Dhawale D, Bau JA, Harale A, Katikaneni S, Gascon J. Rhodium Nanoparticle Size Effects on the CO 2 Reforming of Methane and Propane. ChemCatChem 2021. [DOI: 10.1002/cctc.202100063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
23
Luan D, Jiang H. Theoretical study of surface segregation and ordering in Ni-based bimetallic surface alloys. J Chem Phys 2021;154:074702. [PMID: 33607899 DOI: 10.1063/5.0037913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]  Open
24
Ronda‐Lloret M, Marakatti VS, Sloof WG, Delgado JJ, Sepúlveda‐Escribano A, Ramos‐Fernandez EV, Rothenberg G, Shiju NR. Butane Dry Reforming Catalyzed by Cobalt Oxide Supported on Ti2 AlC MAX Phase. CHEMSUSCHEM 2020;13:6401-6408. [PMID: 32945628 PMCID: PMC7756845 DOI: 10.1002/cssc.202001633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Indexed: 05/12/2023]
25
Jurković DL, Prašnikar A, Pohar A, Likozar B. Surface structure-based CO2 reduction reaction modelling over supported copper catalysts. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
26
Giehr A, Maier L, Angeli S, Schunk SA, Deutschmann O. Dry and Steam Reforming of CH4 on Co-Hexaaluminate: On the Formation of Metallic Co and Its Influence on Catalyst Activity. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
27
Wittich K, Krämer M, Bottke N, Schunk SA. Catalytic Dry Reforming of Methane: Insights from Model Systems. ChemCatChem 2020. [DOI: 10.1002/cctc.201902142] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
28
Yang E, Nam E, Lee J, Lee H, Park ED, Lim H, An K. Al2O3-Coated Ni/CeO2 nanoparticles as coke-resistant catalyst for dry reforming of methane. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01615b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
29
Catalytic Dry Reforming and Cracking of Ethylene for Carbon Nanofilaments and Hydrogen Production Using a Catalyst Derived from a Mining Residue. Catalysts 2019. [DOI: 10.3390/catal9121069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
30
Artificial Intelligence Modelling Approach for the Prediction of CO-Rich Hydrogen Production Rate from Methane Dry Reforming. Catalysts 2019. [DOI: 10.3390/catal9090738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
31
Biogas Upgrading Via Dry Reforming Over a Ni-Sn/CeO2-Al2O3 Catalyst: Influence of the Biogas Source. ENERGIES 2019. [DOI: 10.3390/en12061007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
32
Guharoy U, Ramirez Reina T, Olsson E, Gu S, Cai Q. Theoretical Insights of Ni2P (0001) Surface toward Its Potential Applicability in CO2 Conversion via Dry Reforming of Methane. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04423] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
33
A comparison of Al2O3 and SiO2 supported Ni-based catalysts in their performance for the dry reforming of methane. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/s1872-5813(19)30010-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
34
Low Temperature Activation of Carbon Dioxide by Ammonia in Methane Dry Reforming—A Thermodynamic Study. Catalysts 2018. [DOI: 10.3390/catal8100481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]  Open
35
Iron–ceria spinel (FeCe2O4) catalyst for dry reforming of propane to inhibit carbon formation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
36
The Role of Neodymium in the Optimization of a Ni/CeO2 and Ni/CeZrO2 Methane Dry Reforming Catalyst. INORGANICS 2018. [DOI: 10.3390/inorganics6020039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]  Open
37
Giehr A, Maier L, Schunk SA, Deutschmann O. Thermodynamic Considerations on the Oxidation State of Co/γ-Al2 O3 and Ni/γ-Al2 O3 Catalysts under Dry and Steam Reforming Conditions. ChemCatChem 2018. [DOI: 10.1002/cctc.201701376] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
38
Olivier-Bourbigou H, Chizallet C, Dumeignil F, Fongarland P, Geantet C, Granger P, Launay F, Löfberg A, Massiani P, Maugé F, Ouali A, Roger AC, Schuurman Y, Tanchoux N, Uzio D, Jérôme F, Duprez D, Pinel C. The Pivotal Role of Catalysis in France: Selected Examples of Recent Advances and Future Prospects. ChemCatChem 2017. [DOI: 10.1002/cctc.201700426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
39
Carbon Dioxide Adsorption on V2O3(0001). Top Catal 2017. [DOI: 10.1007/s11244-017-0810-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
40
Peng H, Zhang X, Zhang L, Rao C, Lian J, Liu W, Ying J, Zhang G, Wang Z, Zhang N, Wang X. One-Pot Facile Fabrication of Multiple Nickel Nanoparticles Confined in Microporous Silica Giving a Multiple-Cores@Shell Structure as a Highly Efficient Catalyst for Methane Dry Reforming. ChemCatChem 2016. [DOI: 10.1002/cctc.201601263] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
41
Wehinger GD, Kraume M, Berg V, Korup O, Mette K, Schlögl R, Behrens M, Horn R. Investigating dry reforming of methane with spatial reactor profiles and particle-resolved CFD simulations. AIChE J 2016. [DOI: 10.1002/aic.15520] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
42
Nguyen HNT, Berguerand N, Thunman H. Mechanism and Kinetic Modeling of Catalytic Upgrading of a Biomass-Derived Raw Gas: An Application with Ilmenite as Catalyst. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
43
Pantoleontos G, Skevis G, Karagiannakis G, Konstandopoulos AG. A Heterogeneous Multiscale Dynamic Model for Simulation of Catalytic Reforming Reactors. INT J CHEM KINET 2016. [DOI: 10.1002/kin.20985] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
44
Sadykov VA, Simonov MN, Mezentseva NV, Pavlova SN, Fedorova YE, Bobin AS, Bespalko YN, Ishchenko AV, Krieger TA, Glazneva TS, Larina TV, Cherepanova SV, Kaichev VV, Saraev AA, Chesalov YA, Shmakov AN, Roger AC, Adamski A. Ni-loaded nanocrystalline ceria-zirconia solid solutions prepared via modified Pechini route as stable to coking catalysts of CH4 dry reforming. OPEN CHEM 2016. [DOI: 10.1515/chem-2016-0039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
45
Kameshima S, Tamura K, Ishibashi Y, Nozaki T. Pulsed dry methane reforming in plasma-enhanced catalytic reaction. Catal Today 2015. [DOI: 10.1016/j.cattod.2015.05.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
46
Kawi S, Kathiraser Y, Ni J, Oemar U, Li Z, Saw ET. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. CHEMSUSCHEM 2015;8:3556-75. [PMID: 26440576 DOI: 10.1002/cssc.201500390] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 05/26/2023]
47
Schwab E, Milanov A, Schunk SA, Behrens A, Schödel N. Dry Reforming and Reverse Water Gas Shift: Alternatives for Syngas Production? CHEM-ING-TECH 2015. [DOI: 10.1002/cite.201400111] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA