1
|
Shigemoto A, Sekine Y. Recent advances in low-temperature nitrogen oxide reduction: effects of electric field application. Chem Commun (Camb) 2025; 61:1559-1573. [PMID: 39698954 DOI: 10.1039/d4cc05135a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This article presents a review of catalytic processes used at low temperatures to reduce emissions of nitrogen oxides (NOx) and nitrous oxide (N2O), which are exceedingly important in terms of their environmental impacts on the Earth. With conventional purification technologies, it has been difficult to remove these compounds under low-temperature conditions. By applying a catalytic process in an electric field for the three reactions of three-way catalysts (TWC), NOx storage reduction catalysts (NSR), and direct decomposition of N2O, we have achieved high catalytic activity even at low temperatures. By promoting ion migration on the catalyst surface, we have filled in the gaps in conventional catalytic technology and have opened the way to more efficient conversion of NOx and N2O.
Collapse
Affiliation(s)
- Ayaka Shigemoto
- Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 1698555, Japan.
| | - Yasushi Sekine
- Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 1698555, Japan.
| |
Collapse
|
2
|
Schwarzer M, Borodin D, Wang Y, Fingerhut J, Kitsopoulos TN, Auerbach DJ, Guo H, Wodtke AM. Cooperative adsorbate binding catalyzes high-temperature hydrogen oxidation on palladium. Science 2024; 386:511-516. [PMID: 39480916 DOI: 10.1126/science.adk1334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Atomic-scale structures that account for the acceleration of reactivity by heterogeneous catalysts often form only under reaction conditions of high temperatures and pressures, making them impossible to observe with low-temperature, ultra-high-vacuum methods. We present velocity-resolved kinetics measurements for catalytic hydrogen oxidation on palladium over a wide range of surface concentrations and at high temperatures. The rates exhibit a complex dependence on oxygen coverage and step density, which can be quantitatively explained by a density functional and transition-state theory-based kinetic model involving a cooperatively stabilized configuration of at least three oxygen atoms at steps. Here, two oxygen atoms recruit a third oxygen atom to a nearby binding site to produce an active configuration that is far more reactive than isolated oxygen atoms. Thus, hydrogen oxidation on palladium provides a clear example of how reactivity can be enhanced on a working catalyst.
Collapse
Affiliation(s)
- Michael Schwarzer
- Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Dmitriy Borodin
- Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Yingqi Wang
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jan Fingerhut
- Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany
| | - Theofanis N Kitsopoulos
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Daniel J Auerbach
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | - Alec M Wodtke
- Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Chen S, Fu J, Peng Y, Liang L, Ouyang J. Effective CO 2 Thermocatalytic Hydrogenation with High Coke Resistance on Ni-CZ/Attapulgite Composite. Molecules 2024; 29:4550. [PMID: 39407480 PMCID: PMC11478108 DOI: 10.3390/molecules29194550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Converting CO2 into methane is considered a promising and economically viable technology for global transportation and utilization of this greenhouse gas. This study involves the preparation of a Ni-CZ (CeO2-ZrO2)/ATP (attapulgite) catalyst through the co-precipitation and impregnation methods. XRD, SEM, TEM, N2 absorption-desorption isotherms, XPS, H2-TPR, CO2-TPD, TG/DSC, and Raman were adapted to characterize the obtained samples. Real-time GC was used to measure the catalytic performances and to intensively study the impact of Ni loading content and ATP to CZ ratio on the catalytic performance of the products. DRIFTs was used to monitor the interstitial radicals in the catalytic reactions and to deduce the catalytic mechanisms. The results indicate that the composite catalytic matrix composed of CZ assembled on ATP demonstrated higher CO2 methanation stability and better carbon deposition resistance ability than the single CZ or ATP as the carrier, which should be attributed to the improved specific surface area and pore volume of the ATP assembled matrix and the enhanced dispersibility of the CZ and Ni species. The adoption of CZ solid solutions improves the oxygen storage capability of the catalyst, thereby providing continued mobile O2- in the matrix and accelerating the molecular exchange rate in the catalytic reactions. The ideal loading quantity of nickel contents on the CZA matrix is 15%, as the CO2 conversion decreases at elevated temperatures when the Ni loading content reaches 20%. Among the tested samples, the 15Ni-0.8CZA sample showed the best catalytic performance of 75% CO2 conversion and 100% CH4 selectivity at 400 °C. After 50 h of stability tests, the CO2 conversion rate still remained 70.84%, and the CH4 selectivity obtained 97.46%. No obvious coke was detected according to the Raman spectra of the used catalyst. The in situ DRIFTS experiment showed that formate is the main intermediate of the CO2 hydrogenation reaction on the 15Ni-0.8CZA catalyst.
Collapse
Affiliation(s)
- Shumei Chen
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| | - Jiacheng Fu
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| | - Yonghui Peng
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| | - Lixing Liang
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| | - Jing Ouyang
- Hunan Key Lab of Mineral Materials and Application, Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China (J.F.)
- Engineering Research Center of Ministry of Education for Carbon Emission Reduction in Metal Resource Exploitation and Utilization, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Kim Y, Kim J, Wiebenga MH, Oh SH, Kim DH. Abatement of photochemical smog precursors through complete hydrocarbon oxidation over commercial Pd catalysts under fuel-lean conditions with NO promoting effect. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122721. [PMID: 37838319 DOI: 10.1016/j.envpol.2023.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
Currently, severe environmental issues have led to a great transition in the automotive industry from internal combustion engine vehicles to electric vehicles, but this transition will take time more than 10 years, which still requires the use of internal combustion engine vehicles. However, these vehicles emit a significant amount of hydrocarbons, in addition to nitrogen oxides (NOx), due to incomplete fuel combustion. They contribute to the formation of photochemical smog when they react with NOx in the presence of sunlight. To effectively remove these hydrocarbons from the exhaust gas of turbo-gasoline engines or diesel engines, we investigated the abatement of propane and iso-pentane, two typical hydrocarbons. In particular, we studied commercial Pd catalysts and revealed how the Pd loading and aging process simulating 4k and 100k mileage affected hydrocarbon abatement abilities, and their phases were identified using characterization technique, including CO chemisorption, X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM). We also suggested the reaction pathway for the complete oxidation of propane over Pd catalyst based on the reaction orders of propane and oxygen: Propane adsorbs on O atoms of PdO, and the kinetically relevant C-H bond cleavage step occurs by the interaction with abundant neighboring O atoms of PdO. Finally, the propane and iso-pentane abatement ability of the Pd catalyst aged for 100k mileage were evaluated under realistic exhaust gas conditions, and the effect of each gas component in the realistic exhaust gas was identified; water inhibits the catalytic reaction of hydrocarbons by occupying the active sites, whereas NO catalyzes the hydrocarbon oxidation reaction by either changing the reaction pathway or active sites under fuel-lean conditions. These findings enable us to effectively reduce environmental pollution and facilitate a smoother transition from internal combustion engine vehicles to electric vehicles.
Collapse
Affiliation(s)
- Yongwoo Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea; Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jonghyun Kim
- Corporate R&D, LG Chem R&D Campus Daejeon, 188, Daejeon, 34122, Republic of Korea
| | | | - Se H Oh
- General Motors Global R&D, 30470 Harley Earl Blvd, Warren, MI, 48092, USA
| | - Do Heui Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Liu T, Wei J, Liu P, Shi H, Wang Q, Yang Y. Insight into the mechanism of direct N-C coupling in selective catalytic reduction of NO by CO over Ni(111)-supported graphene. Phys Chem Chem Phys 2023; 25:26185-26195. [PMID: 37740345 DOI: 10.1039/d3cp01810e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Selective catalytic reduction (SCR) of NO using CO as a reducing agent is a straightforward and promising approach to the simultaneous removal of NO and CO. Herein, a novel mechanism of N-C direct coupling of gaseous NO and CO into ONCO and subsequent hydrogenation of *ONCO to nitrogen-containing compounds over Ni(111)-supported graphene ((Gr/Ni(111)) is reported. The results indicate that Gr/Ni(111) can not only trigger direct N-C coupling of NO and CO to form ONCO with a low activation energy barrier of 0.11 eV, but also enable the key intermediate of *ONCO to be stable. The *ONCO chemisorbed on Gr/Ni(111) exhibits negative univalent [ONCO]- and is more stable than neutral ONCO. The hydrogenation pathways show that HNCO preferably forms through a kinetically favorable initial N-C coupling due to the lowest free-energy barrier of 0.18 eV, while NH2CH3 is a considerably competitive product because its free-energy barrier is only 0.20 eV higher than that of HNCO. Our results provide a fundamental insight into the novel reaction mechanism of the SCR of NO and also suggest that nickel-supported graphene is a potential and high-efficient catalyst for eliminating CO and NO harmful gases.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Juan Wei
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Pengfei Liu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, P. R. China
| | - Hui Shi
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Qiang Wang
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yanhui Yang
- School of Chemistry and Molecular Engineering, Institute of Chemical Biology and Functional Molecules (ICBFM), Nanjing Tech University, Nanjing 211816, P. R. China.
- Institute of Advanced Synthesis (IAS), Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Chen JJ, Wang SD, Li ZY, Li XN, He SG. Selective Reduction of NO into N 2 Catalyzed by Rh 1-Doped Cluster Anions RhCe 2O 3-5. J Am Chem Soc 2023; 145:18658-18667. [PMID: 37572057 DOI: 10.1021/jacs.3c06565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Catalytic conversion of toxic nitrogen oxide (NO) and carbon monoxide (CO) into nitrogen (N2) and carbon dioxide (CO2) is imperative under the weight of the increasingly stringent emission regulations, while a fundamental understanding of the nature of the active site to selectively drive N2 generation is elusive. Herein, in combination with state-of-the-art mass-spectrometric experiments and quantum-chemical calculations, we demonstrated that the rhodium-cerium oxide clusters RhCe2O3-5- can catalytically drive NO reduction by CO and give rise to N2 and CO2. This finding represents a sharp improvement in cluster science where N2O is commonly produced in the rarely established examples of catalytic NO reduction mediated with gas-phase clusters. We demonstrated the importance of the unique chemical environment in the RhCe2O3- cluster to guide the substantially improved N2 selectivity: a triatomic Lewis "acid-base-acid" Ceδ+-Rhδ--Ceδ+ site is proposed to strongly adsorb two NO molecules as well as the N2O intermediate that is attached on the Rh atom and can facilely dissociate to form N2 assisted by both Ce atoms.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zi-Yu Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Rostovshchikova TN, Shilina MI, Gurevich SA, Yavsin DA, Veselov GB, Stoyanovskii VO, Vedyagin AA. Studies on High-Temperature Evolution of Low-Loaded Pd Three-Way Catalysts Prepared by Laser Electrodispersion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093501. [PMID: 37176383 PMCID: PMC10179799 DOI: 10.3390/ma16093501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Pd/Al2O3 catalyst of the "crust" type with Pd loading of 0.03 wt.% was prepared by the deposition of 2 nm Pd particles on the outer surface of the alumina support using laser electrodispersion (LED). This technique differs from a standard laser ablation into a liquid in that the formation of monodisperse nanoparticles occurs in the laser torch plasma in a vacuum. As is found, the LED-prepared catalyst surpasses Pd-containing three-way catalysts, obtained by conventional chemical synthesis, in activity and stability in CO oxidation under prompt thermal aging conditions. Thus, the LED-prepared Pd/Al2O3 catalyst showed the best thermal stability up to 1000 °C. The present research is focused on the study of the high-temperature evolution of the Pd/Al2O3 catalyst in two reaction mixtures by a set of physicochemical methods (transmission electron microscopy, X-ray photoelectron spectroscopy, and diffuse reflectance UV-vis spectroscopy). In order to follow the dispersion of the Pd nanoparticles during the thermal aging procedure, the testing reaction of ethane hydrogenolysis was also applied. The possible reasons for the high stability of LED-prepared catalysts are suggested.
Collapse
Affiliation(s)
- Tatiana N Rostovshchikova
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Marina I Shilina
- Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey A Gurevich
- Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya Str., 194021 Saint Petersburg, Russia
| | - Denis A Yavsin
- Ioffe Physico-Technical Institute, Russian Academy of Sciences, 26 Politechnicheskaya Str., 194021 Saint Petersburg, Russia
| | - Grigory B Veselov
- Boreskov Institute of Catalysis, 5 Lavrentyev Avenue, 630090 Novosibirsk, Russia
| | | | - Aleksey A Vedyagin
- Boreskov Institute of Catalysis, 5 Lavrentyev Avenue, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Gong X, Xu J, Zhang T, Sun Y, Fang S, Li N, Zhu J, Wu Z, Li J, Gao E, Wang W, Yao S. DRIFTS-MS Investigation of Low-Temperature CO Oxidation on Cu-Doped Manganese Oxide Prepared Using Nitrate Aerosol Decomposition. Molecules 2023; 28:molecules28083511. [PMID: 37110744 PMCID: PMC10144047 DOI: 10.3390/molecules28083511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cu-doped manganese oxide (Cu-Mn2O4) prepared using aerosol decomposition was used as a CO oxidation catalyst. Cu was successfully doped into Mn2O4 due to their nitrate precursors having closed thermal decomposition properties, which ensured the atomic ratio of Cu/(Cu + Mn) in Cu-Mn2O4 close to that in their nitrate precursors. The 0.5Cu-Mn2O4 catalyst of 0.48 Cu/(Cu + Mn) atomic ratio had the best CO oxidation performance, with T50 and T90 as low as 48 and 69 °C, respectively. The 0.5Cu-Mn2O4 catalyst also had (1) a hollow sphere morphology, where the sphere wall was composed of a large number of nanospheres (about 10 nm), (2) the largest specific surface area and defects on the interfacing of the nanospheres, and (3) the highest Mn3+, Cu+, and Oads ratios, which facilitated oxygen vacancy formation, CO adsorption, and CO oxidation, respectively, yielding a synergetic effect on CO oxidation. DRIFTS-MS analysis results showed that terminal-type oxygen (M=O) and bridge-type oxygen (M-O-M) on 0.5Cu-Mn2O4 were reactive at a low temperature, resulting in-good low-temperature CO oxidation performance. Water could adsorb on 0.5Cu-Mn2O4 and inhibited M=O and M-O-M reaction with CO. Water could not inhibit O2 decomposition to M=O and M-O-M. The 0.5Cu-Mn2O4 catalyst had excellent water resistance at 150 °C, at which the influence of water (up to 5%) on CO oxidation could be completely eliminated.
Collapse
Affiliation(s)
- Xingfan Gong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jiacheng Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Tiantian Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Shiyu Fang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Ning Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jiali Zhu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Zuliang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Jing Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Erhao Gao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- School of Material Science and Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou 213164, China
| |
Collapse
|
9
|
Cao Y, Ran R, Wu X, Si Z, Kang F, Weng D. Progress on metal-support interactions in Pd-based catalysts for automobile emission control. J Environ Sci (China) 2023; 125:401-426. [PMID: 36375925 DOI: 10.1016/j.jes.2022.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 06/16/2023]
Abstract
The interactions between metals and oxide supports, so-called metal-support interactions (MSI), are of great importance in heterogeneous catalysis. Pd-based automotive exhaust control catalysts, especially Pd-based three-way catalysts (TWCs), have received considerable research attention owing to its prominent oxidation activity of HCs/CO, as well as excellent thermal stability. For Pd-based TWCs, the dispersion, chemical state and thermal stability of Pd species, which are crucial to the catalytic performance, are closely associated with interactions between metal nanoparticles and their supporting matrix. Progress on the research about MSI and utilization of MSI in advanced Pd-based three-way catalysts are reviewed here. Along with the development of advanced synthesis approaches and engine control technology, the study on MSI would play a notable role in further development of catalysts for automobile exhaust control.
Collapse
Affiliation(s)
- Yidan Cao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China.
| | - Rui Ran
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaodong Wu
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhichun Si
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Feiyu Kang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Duan Weng
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Zhang Y, Feng S. A theoretical study of the Pd 10Sb 3 single-atom alloy cluster for CO oxidations. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2183066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Yanxing Zhang
- School of Physics, Henan Normal University, Xinxiang, People’s Republic of China
| | - Siya Feng
- School of Physics, Henan Normal University, Xinxiang, People’s Republic of China
| |
Collapse
|
11
|
Post-synthetic modification of dual-porous UMCM-1-NH2 with palladacycle complex as an effective heterogeneous catalyst in Suzuki and Heck coupling reactions. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Yoshiyama Y, Hosokawa S, Haneda M, Morishita M, Asakura H, Teramura K, Tanaka T. Reactivity of Lattice Oxygen in Ti-Site-Substituted SrTiO 3 Perovskite Catalysts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5293-5300. [PMID: 36660899 DOI: 10.1021/acsami.2c20165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An environmental catalyst in which a transition metal (Mn, Fe, or Co) was substituted into the Ti site of the host material, SrTiO3, was synthesized, and the reactivity of lattice oxygen was evaluated. For CO oxidation, Mn- and Co-doped SrTiO3 catalysts, which provided high thermal stabilities, exhibited higher activities than Pt/Al2O3 catalysts despite their low surface areas. Temperature-programmed reduction experiments using X-ray absorption fine structure (XAFS) measurements showed that the lattice oxygen of Co-doped catalyst was released at the lowest temperature. Isotopic experiments with CO and 18O2 revealed that the lattice oxygen was involved in CO oxidation on Fe- and Co-doped catalysts; that is, CO oxidation on these catalysts proceeded via the Mars-van Krevelen mechanism. On the other hand, for Mn-doped catalyst, the contribution of lattice oxygen to CO oxidation was relatively negligible, indicating that the reaction proceeded according to the Langmuir-Hinshelwood mechanism. This paper clearly demonstrates that the catalytic mechanism can be adjusted by substituting transition metals into SrTiO3.
Collapse
Affiliation(s)
- Yuji Yoshiyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Saburo Hosokawa
- Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto606-8585, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| | - Masaaki Haneda
- Advanced Ceramics Research Center, Nagoya Institute of Technology, 10-6-29 Asahigaoka, Tajimi, Gifu507-0071, Japan
| | - Masashige Morishita
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Hiroyuki Asakura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| | - Kentaro Teramura
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto615-8510, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto615-8245, Japan
| |
Collapse
|
13
|
Lehr A, Velázquez-Salazar JJ, Montejano-Carrizales JM, Mejia-Rosales S, Mendoza-Cruz R, Bazan-Diaz L, Yacaman MJ. Spiers Memorial Lecture: Nanoalloys of multiple components; the road to advance the field and experimental and theoretical challenges. Faraday Discuss 2023; 242:10-22. [PMID: 36190123 DOI: 10.1039/d2fd00137c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of nanoalloys has been advancing at a rapid pace in the last two decades. Many new characterization methods and theoretical advances have produced a substantial knowledge of the nanoalloys' properties and structure. Most of the work has been limited to binary alloys. A path forward for the field will be the study of nanoalloys with three or more metals. Adding new components will produce new properties and possibly more fabrication controls. In this paper, we will discuss the challenges that will arise in multi-metallic nanoalloys. We will show that entropy and twin boundaries play a dominant role in multi-metallic alloys.
Collapse
Affiliation(s)
- Alexander Lehr
- Applied Physics and Materials Science Department, MIRA Northern Arizona University, USA.
| | | | | | | | | | | | - Miguel José Yacaman
- Applied Physics and Materials Science Department, MIRA Northern Arizona University, USA.
| |
Collapse
|
14
|
Yacaman MJ, Velazquez-Salazar JJ, Mendoza-Cruz R, Lehr A. The role of twinning in multi metallic alloys at the nanoscale. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Copper–Cerium–Tin Oxide Catalysts for Preferential Oxidation of CO in Hydrogen: Effects of Synthesis Method and Copper Content. Catalysts 2022. [DOI: 10.3390/catal12121575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Copper was incorporated into the Ce-Sn and comparative Ce-Zr oxide supports by one-pot precipitation in the presence of CTAB template and by the impregnation of templated Ce-Sn and Ce-Zr oxides. The synthesized Cu-Ce-Sn and Cu-Ce-Zr catalysts were tested in the continuous-flow preferential oxidation of CO in hydrogen excess. The one-pot synthesized tin- and zirconium-doped catalysts demonstrated better CO conversion and CO2 selectivity than their impregnated counterparts. For the tin-modified ternary system that showed the best catalytic performance, the copper content was further optimized. The structure, reducibility, surface chemical state and textural properties of the catalysts were analyzed by SEM-EDX, XRD, H2-TPR, Raman spectroscopy, XPS and TEM. The nonmonotonic changes in the specific surface area, Cu+/Cu2+ ratio and ratio of lattice and non-lattice oxygen with increasing the Cu content are discussed in terms of copper distribution in the catalysts. The influence of the interaction between copper oxide species and the cerium–tin/cerium–zirconium oxide support on the performance of the ternary catalysts was thoroughly analyzed and discussed.
Collapse
|
16
|
Gatin AK, Dokhlikova NV, Mukhutdinova RG, Ozerin SA, Grishin MV. Specific Features of the Interaction of Oxidized Platinum Nanoparticles with Molecular Hydrogen and Carbon Monoxide. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22600233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Deng Y, Liu S, Fu L, Yuan Y, Zhao A, Wang D, Zheng H, Ouyang L, Yuan S. Crystal plane induced metal-support interaction in Pd/Pr-CeO2 catalyst boosts H2O-assisted CO oxidation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Faddeev NA, Kuriganova AB, Leont’ev IN, Smirnova NV. Palladium-Based Electroactive Materials for Environmental Catalysis. DOKLADY PHYSICAL CHEMISTRY 2022. [DOI: 10.1134/s0012501622700063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
19
|
Evaluating Different Strategies to Minimize cold-start Emissions from Gasoline Engines in steady-state and Transient Regimes. Top Catal 2022. [DOI: 10.1007/s11244-022-01721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Jing Y, Wang G, Mine S, Kawai J, Toyoshima R, Kondoh H, Zhang X, Nagaoka S, Shimizu KI, Toyao T. Promoting Effect of Basic Metal Additives on DeNOx Reactions over Pt-Based Three-Way Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Yashnik SA. Catalytic Diesel Exhaust Systems: Modern Problems and Technological Solutions for Modernization of the Oxidation Catalyst. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Quality or Quantity? How Structural Parameters Affect Catalytic Activity of Iron Oxides for CO Oxidation. Catalysts 2022. [DOI: 10.3390/catal12060675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The replacement of noble metal catalysts by abundant iron as an active compound in CO oxidation is of ecologic and economic interest. However, improvement of their catalytic performance to the same level as state-of-the-art noble metal catalysts requires an in depth understanding of their working principle on an atomic level. As a contribution to this aim, a series of iron oxide catalysts with varying Fe loadings from 1 to 20 wt% immobilized on a γ-Al2O3 support is presented here, and a multidimensional structure–activity correlation is established. The CO oxidation activity is correlated to structural details obtained by various spectroscopic, diffraction, and microscopic methods, such as PXRD, PDF analysis, DRUVS, Mössbauer spectroscopy, STEM-EDX, and XAS. Low Fe loadings lead to less agglomerated but high percentual amounts of isolated, tetrahedrally coordinated iron oxide species, while the absolute amount of isolated species reaches its maximum at high Fe loadings. Consequently, the highest CO oxidation activity in terms of turnover frequencies can be correlated to small, finely dispersed iron oxide species with a large amount of tetrahedrally oxygen coordinated iron sites, while the overall amount of isolated iron oxide species correlates with a lower light-off temperature.
Collapse
|
23
|
Yong X, Chen H, Zhao H, Wei M, Zhao Y, Li Y. Insight into SO2 poisoning and regeneration of one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NO by NH3. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Moreira TFM, Andrade AR, Kokoh KB, Morais C, Napporn TW, Olivi P. An FTIR study of the electrooxidation of C2 and C3 alcohols on carbon‐supported PdxRhy in alkaline medium. ChemElectroChem 2022. [DOI: 10.1002/celc.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Claudia Morais
- University of Poitiers: Universite de Poitiers Chemistry FRANCE
| | - Teko Wilhelmin Napporn
- Universite de Poitiers Chemistry IC2MP UMR 7285 CNRSUniversite de Poitiers4, rue Michel Brunet B27 TSA 51106 86073 Poitiers FRANCE
| | - Paulo Olivi
- University of Sao Paulo: Universidade de Sao Paulo FFCLRP BRAZIL
| |
Collapse
|
25
|
Marques B, Kostenidou E, Valiente AM, Vansevenant B, Sarica T, Fine L, Temime-Roussel B, Tassel P, Perret P, Liu Y, Sartelet K, Ferronato C, D’Anna B. Detailed Speciation of Non-Methane Volatile Organic Compounds in Exhaust Emissions from Diesel and Gasoline Euro 5 Vehicles Using Online and Offline Measurements. TOXICS 2022; 10:toxics10040184. [PMID: 35448445 PMCID: PMC9032894 DOI: 10.3390/toxics10040184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023]
Abstract
The characterization of vehicle exhaust emissions of volatile organic compounds (VOCs) is essential to estimate their impact on the formation of secondary organic aerosol (SOA) and, more generally, air quality. This paper revises and updates non-methane volatile organic compounds (NMVOCs) tailpipe emissions of three Euro 5 vehicles during Artemis cold urban (CU) and motorway (MW) cycles. Positive matrix factorization (PMF) analysis is carried out for the first time on proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) datasets of vehicular emission. Statistical analysis helped to associate the emitted VOCs to specific driving conditions, such as the start of the vehicles, the activation of the catalysts, or to specific engine combustion regimes. Merged PTR-ToF-MS and automated thermal desorption gas chromatography mass spectrometer (ATD-GC-MS) datasets provided an exhaustive description of the NMVOC emission factors (EFs) of the vehicles, thus helping to identify and quantify up to 147 individual compounds. In general, emissions during the CU cycle exceed those during the MW cycle. The gasoline direct injection (GDI) vehicle exhibits the highest EF during both CU and MW cycles (252 and 15 mg/km), followed by the port-fuel injection (PFI) vehicle (24 and 0.4 mg/km), and finally the diesel vehicle (15 and 3 mg/km). For all vehicles, emissions are dominated by unburnt fuel and incomplete combustion products. Diesel emissions are mostly represented by oxygenated compounds (65%) and aliphatic hydrocarbons (23%) up to C22, while GDI and PFI exhaust emissions are composed of monoaromatics (68%) and alkanes (15%). Intermediate volatility organic compounds (IVOCs) range from 2.7 to 13% of the emissions, comprising essentially linear alkanes for the diesel vehicle, while naphthalene accounts up to 42% of the IVOC fraction for the gasoline vehicles. This work demonstrates that PMF analysis of PTR-ToF-MS datasets and GC-MS analysis of vehicular emissions provide a revised and deep characterization of vehicular emissions to enrich current emission inventories.
Collapse
Affiliation(s)
- Baptiste Marques
- Aix Marseille Univ, CNRS, LCE, UMR 7376, 13331 Marseille, France; (E.K.); (B.T.-R.)
- French Agency for Ecological Transition, ADEME, 49000 Angers, France;
- Correspondence: (B.M.); (B.D.)
| | - Evangelia Kostenidou
- Aix Marseille Univ, CNRS, LCE, UMR 7376, 13331 Marseille, France; (E.K.); (B.T.-R.)
| | - Alvaro Martinez Valiente
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France; (A.M.V.); (L.F.); (C.F.)
| | - Boris Vansevenant
- French Agency for Ecological Transition, ADEME, 49000 Angers, France;
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France; (A.M.V.); (L.F.); (C.F.)
- Univ Gustave Eiffel, Univ Lyon, AME-EASE, 69675 Lyon, France; (P.T.); (P.P.); (Y.L.)
| | - Thibaud Sarica
- CEREA, Ecole des Ponts ParisTech, EdF R&D, 77455 Marne-la Vallée, France; (T.S.); (K.S.)
| | - Ludovic Fine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France; (A.M.V.); (L.F.); (C.F.)
| | - Brice Temime-Roussel
- Aix Marseille Univ, CNRS, LCE, UMR 7376, 13331 Marseille, France; (E.K.); (B.T.-R.)
| | - Patrick Tassel
- Univ Gustave Eiffel, Univ Lyon, AME-EASE, 69675 Lyon, France; (P.T.); (P.P.); (Y.L.)
| | - Pascal Perret
- Univ Gustave Eiffel, Univ Lyon, AME-EASE, 69675 Lyon, France; (P.T.); (P.P.); (Y.L.)
| | - Yao Liu
- Univ Gustave Eiffel, Univ Lyon, AME-EASE, 69675 Lyon, France; (P.T.); (P.P.); (Y.L.)
| | - Karine Sartelet
- CEREA, Ecole des Ponts ParisTech, EdF R&D, 77455 Marne-la Vallée, France; (T.S.); (K.S.)
| | - Corinne Ferronato
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626 Villeurbanne, France; (A.M.V.); (L.F.); (C.F.)
| | - Barbara D’Anna
- Aix Marseille Univ, CNRS, LCE, UMR 7376, 13331 Marseille, France; (E.K.); (B.T.-R.)
- Correspondence: (B.M.); (B.D.)
| |
Collapse
|
26
|
Chen L, Wu XP, Gong XQ. Unique catalytic mechanisms of methanol dehydrogenation at Pd-doped ceria: A DFT+U study. J Chem Phys 2022; 156:134701. [PMID: 35395884 DOI: 10.1063/5.0085913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pd-doped ceria is highly active in promoting oxidative dehydrogenation (ODH) reactions and also a model single atom catalyst (SAC). By performing density functional theory calculations corrected by on-site Coulomb interactions, we systematically studied the physicochemical properties of the Pd-doped CeO2(111) surface and the catalytic methanol to formaldehyde reaction on the surface. Two different configurations were located for the Pd dopant, and the calculated results showed that doping of Pd will make the surface more active with lower oxygen vacancy formation energies than the pristine CeO2(111). Moreover, two different pathways for the dehydrogenation of CH3OH to HCHO on the Pd-doped CeO2(111) were determined, one of which is the conventional two-step process (stepwise pathway) with the O-H bond of CH3OH being broken first followed by the C-H bond cleavage, while the other is a novel one-step process (concerted pathway) involving the two H being dissociated from CH3OH simultaneously even with a lower energy barrier than the stepwise one. With electronic and structural analyses, we showed that the direct reduction of Pd4+ to Pd2+ through the transfer of two electrons can outperform the separated Ce4+ to Ce3+ processes with the help of configurational evolution at the Pd site, which is responsible for the existence of such one-step dehydrogenation process. This novel mechanism may provide an inspiration for constructing ceria-based SAC with unique ODH activities.
Collapse
Affiliation(s)
- Lu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
27
|
Yoshida H, Koide T, Uemura T, Kuzuhara Y, Ohyama J, Machida M. Ce-modified Rh Overlayer for a Three-Way Catalytic Converter with Oxygen Storage/Release Capability. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
KIKKAWA S, Teramura K, Kato K, Asakura H, Hosokawa S, Tanaka T. Formation of CH4 at Metal–Support Interface of Pt/Al2O3 During Hydrogenation of CO2: Operando XAS‐DRIFTS Study. ChemCatChem 2022. [DOI: 10.1002/cctc.202101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soichi KIKKAWA
- Tokyo Metropolitan University Graduate School and Faculty of Science: Tokyo Toritsu Daigaku Rigakubu Daigakuin Rigaku Kenkyuka Chemistry 1-1 Minami-Osawa 192-0397 Hachioji JAPAN
| | - Kentaro Teramura
- Kyoto University Department of Molecular Engineering, Graduate School of Engineering Kyotodaigaku Katsura 615-8510 Kyoto JAPAN
| | - Kazuo Kato
- Japan Synchrotron Radiation Research Institute, SPring-8 Center for Synchrotron Radiation Research JAPAN
| | - Hiroyuki Asakura
- Kyoto University Faculty of Engineering Graduate School of Engineering: Kyoto Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Department of Molecular Engineering JAPAN
| | - Saburo Hosokawa
- Kyoto University Faculty of Engineering Graduate School of Engineering: Kyoto Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Department of Molecular Engineering JAPAN
| | - Tsunehiro Tanaka
- Kyoto University Faculty of Engineering Graduate School of Engineering: Kyoto Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Department of Molecular Engineering JAPAN
| |
Collapse
|
29
|
KIKKAWA S, TERAMURA K, ASAKURA H, HOSOKAWA S, TANAKA T. In Situ Time-Resolved XAS Study on Metal-Support-Interaction-Induced Morphology Change of PtO2 Nanoparticles Supported on γ-Al2O3 Under H2 Reduction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
|
31
|
Kibis LS, Korobova AN, Fedorova EA, Kardash TY, Zadesenets AV, Korenev SV, Stonkus OA, Slavinskaya EM, Podyacheva OY, Boronin AI. APPLICATION OF N-DOPED CARBON NANOTUBES FOR THE PREPARATION OF HIGHLY DISPERSED PdO–CeO2 COMPOSITE CATALYSTS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Jing Y, Wang G, Mine S, Maeno Z, Siddiki SMAH, Kobayashi M, Nagaoka S, Shimizu KI, Toyao T. Role of Ba in an Al2O3‐Supported Pd‐based Catalyst under Practical Three‐Way Catalysis Conditions. ChemCatChem 2022. [DOI: 10.1002/cctc.202101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuan Jing
- Hokkaido University Institute for Catalysis JAPAN
| | - Gang Wang
- Hokkaido University Institute for Catalysis JAPAN
| | - Shinya Mine
- Hokkaido University Institute for Catalysis JAPAN
| | - Zen Maeno
- Hokkaido University Institute for Catalysis JAPAN
| | | | - Masayuki Kobayashi
- Johnson Matthey Savannah: Johnson Matthey Process Technologies Inc Japan branch JAPAN
| | | | | | - Takashi Toyao
- Hokkaido university Institute of Catalysis N-21, W-10 001-0021 Sapporo JAPAN
| |
Collapse
|
33
|
Relationship between design strategies of commercial three-way monolithic catalysts and their performances in realistic conditions. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Bayram B, Önal I, Külah G. Thermal stability and SO2 resistance of Pd/Rh-perovskite based three-way catalyst wash-coated on cordierite monoliths. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2030727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Bilal Bayram
- Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Işık Önal
- Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Görkem Külah
- Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
35
|
Wang G, Jing Y, Ting KW, Maeno Z, Zhang X, Nagaoka S, Shimizu KI, Toyao T. Effect of oxygen storage materials on the performance of Pt-based three-way catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt supported on oxygen storage materials (CeO2 and CeO2–ZrO2) as effective three-way catalysts.
Collapse
Affiliation(s)
- Gang Wang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Kah Wei Ting
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Xiaorui Zhang
- Johnson Matthey Japan G.K., 5123-3, Kitsuregawa, Sakura, Tochigi 329-1412, Japan
| | - Shuhei Nagaoka
- Johnson Matthey Japan G.K., 5123-3, Kitsuregawa, Sakura, Tochigi 329-1412, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
36
|
Alex KV, Kamakshi K, Silva J, Sathish S, Sekhar K. Automobile exhaust nanocatalysts. NANOTECHNOLOGY IN THE AUTOMOTIVE INDUSTRY 2022:529-560. [DOI: 10.1016/b978-0-323-90524-4.00031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
37
|
Shen P, Zhang G, Wu Y, Zhang Y, Liu X, Xu Y, Chen Y, Zhong L. Pd-Based Catalyst on Alumina with Perovskite (La0.67Fe0.83Cu0.17O3) to Reduce Ammonia Content in Natural Gas Exhaust. Catal Letters 2021. [DOI: 10.1007/s10562-021-03598-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Nasluzov VA, Ivanova-Shor EA, Shor AM, Laletina SS, Neyman KM. Adsorption and Oxidation of CO on Ceria Nanoparticles Exposing Single-Atom Pd and Ag: A DFT Modelling. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6888. [PMID: 34832290 PMCID: PMC8618484 DOI: 10.3390/ma14226888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Various COx species formed upon the adsorption and oxidation of CO on palladium and silver single atoms supported on a model ceria nanoparticle (NP) have been studied using density functional calculations. For both metals M, the ceria-supported MCOx moieties are found to be stabilised in the order MCO < MCO2 < MCO3, similar to the trend for COx species adsorbed on M-free ceria NP. Nevertheless, the characteristics of the palladium and silver intermediates are different. Very weak CO adsorption and the small exothermicity of the CO to CO2 transformation are found for O4Pd site of the Pd/Ce21O42 model featuring a square-planar coordination of the Pd2+ cation. The removal of one O atom and formation of the O3Pd site resulted in a notable strengthening of CO adsorption and increased the exothermicity of the CO to CO2 reaction. For the analogous ceria models with atomic Ag instead of atomic Pd, these two energies became twice as small in magnitude and basically independent of the presence of an O vacancy near the Ag atom. CO2-species are strongly bound in palladium carboxylate complexes, whereas the CO2 molecule easily desorbs from oxide-supported AgCO2 moieties. Opposite to metal-free ceria particle, the formation of neither PdCO3 nor AgCO3 carbonate intermediates before CO2 desorption is predicted. Overall, CO oxidation is concluded to be more favourable at Ag centres atomically dispersed on ceria nanostructures than at the corresponding Pd centres. Calculated vibrational fingerprints of surface COx moieties allow us to distinguish between CO adsorption on bare ceria NP (blue frequency shifts) and ceria-supported metal atoms (red frequency shifts). However, discrimination between the CO2 and CO32- species anchored to M-containing and bare ceria particles based solely on vibrational spectroscopy seems problematic. This computational modelling study provides guidance for the knowledge-driven design of more efficient ceria-based single-atom catalysts for the environmentally important CO oxidation reaction.
Collapse
Affiliation(s)
- Vladimir A. Nasluzov
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Elena A. Ivanova-Shor
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Aleksey M. Shor
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Svetlana S. Laletina
- Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.A.N.); (A.M.S.); (S.S.L.)
| | - Konstantin M. Neyman
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional, Universitat de Barcelona, 08028 Barcelona, Spain;
- ICREA (Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| |
Collapse
|
39
|
Jiang M, Wu Q, Yan J, Pan J, Dai Q, Zhan W. Si-doped Al 2O 3 nanosheet supported Pd for catalytic combustion of propane: effects of Si doping on morphology, thermal stability, and water resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56480-56490. [PMID: 34057630 DOI: 10.1007/s11356-021-14646-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Catalytic combustion of propane as typical light alkanes was important for the purification of industrial VOCs and automobile hydrocarbon emissions. Si-doped Al2O3 nanosheet was synthesized by a hydrothermal method, and effects of Si content on the morphology and thermal stability of Al2O3 were investigated. The doping of SiO2 could tune the thickness of Al2O3 nanosheets and significantly improve its thermal stability, the θ phase was still maintained, and the specific surface area was as high as 56.3 m2 g-1 after calcination at 1200 °C. And then the Si-doped Al2O3 nanosheets were used as support of Pd catalysts (Pd/Si-Al2O3 nanosheets) for catalytic combustion of propane, especially Pd/3.6Si-Al2O3 nanosheets, which presented high activity, stability, and resistance to sintering and H2O due to the promotion of Si on the thermal stability of Al2O3 and the stabilization (dispersion, isolation, and strong interaction) of PdOx species.
Collapse
Affiliation(s)
- Mingxiang Jiang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qingqing Wu
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiaorong Yan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jun Pan
- Nanjing Engineering Institute of Aircraft Systems, AVIC, Nanjing, 211106, People's Republic of China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
40
|
|
41
|
|
42
|
|
43
|
Jing Y, Wang G, Ting KW, Maeno Z, Oshima K, Satokawa S, Nagaoka S, Shimizu KI, Toyao T. Roles of the basic metals La, Ba, and Sr as additives in Al2O3-supported Pd-based three-way catalysts. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
Machida M, Uchida Y, Iwashita S, Yoshida H, Tsushida M, Ohyama J, Nagao Y, Endo Y, Wakabayashi T. Catalyst Deactivation via Rhodium–Support Interactions under High-Temperature Oxidizing Conditions: A Comparative Study on Hexaaluminates versus Al 2O 3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masato Machida
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
| | - Yuki Uchida
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
| | - Shundai Iwashita
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
| | - Hiroshi Yoshida
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
| | - Masayuki Tsushida
- Technical Division, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
| | - Junya Ohyama
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
| | - Yuki Nagao
- Mitsui Mining & Smelting Co., Ltd., Ageo, Saitama 362-0025, Japan
| | - Yoshinori Endo
- Mitsui Mining & Smelting Co., Ltd., Ageo, Saitama 362-0025, Japan
| | | |
Collapse
|
45
|
Yoshida H, Oyama H, Shiomori R, Hirakawa T, Ohyama J, Machida M. Enhanced Catalytic NO Reduction in NO–CO–C 3H 6–O 2 Reaction Using Pseudo-Spinel (NiCu)Al 2O 4 Supported on γ-Al 2O 3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Yoshida
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
| | - Haruka Oyama
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
| | - Ryo Shiomori
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
| | - Taiki Hirakawa
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
| | - Junya Ohyama
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
| | - Masato Machida
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo, Kyoto 615-8245, Japan
| |
Collapse
|
46
|
Chen S, Hou Y, Wang H, Zhao Z, Zhang Y, Yang J, Huang X. Enhanced thermal stability of Ce0.33Zr0.55(LaNdY)0.12O2 mixed oxides prepared by sulfate-aided coprecipitation method. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Chen S, Li S, You R, Guo Z, Wang F, Li G, Yuan W, Zhu B, Gao Y, Zhang Z, Yang H, Wang Y. Elucidation of Active Sites for CH 4 Catalytic Oxidation over Pd/CeO 2 Via Tailoring Metal–Support Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00839] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiyuan Chen
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Songda Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ruiyang You
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyi Guo
- School of Chemical Engineering, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Fei Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guanxing Li
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wentao Yuan
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Beien Zhu
- Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai Advanced Research Institute, Shanghai 201210, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai 201800, China
| | - Yi Gao
- Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai Advanced Research Institute, Shanghai 201210, China
- Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai 201800, China
| | - Ze Zhang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangsheng Yang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong Wang
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
48
|
Preparation and Investigation of Pd and Bimetallic Pd-Sn Nanocrystals on γ-Al2O3. CRYSTALS 2021. [DOI: 10.3390/cryst11040444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
One of the key factors for producing highly dispersed controlled nanoparticles is the method used for metal deposition. The decomposition of metal-organic precursors is a good method for deposition of metal nanoparticles with very small sizes and narrow size distributions on the surface of various supports. The preparation process of Pd and bimetallic Pd-Sn nanoparticles supported onto γ-Al2O3 is considered. The samples were prepared by diffusional co-impregnation of the γ-Al2O3 support by using organometallic Pd(acac)2 and Sn(acac)2Cl2 precursors. To achieve the formation of Pd and bimetallic Pd-Sn nanoparticles on the support surface, the synthesized samples were then subjected to thermal decomposition under Ar (to decompose the organometallic bound to the surface while keeping the formed nanoparticles small) followed by an oxidation in O2 (to eliminate the organic compounds remaining on the surface) and a reduction in H2 (to reduce the nanoparticles oxidized during the previous step). A combination of methods (ICP-OES, TPR-H2, XPS, TEM/EDX) was used to compare the physical-chemical properties of the synthesized Pd and bimetallic Pd-Sn nanoparticles supported on the γ-Al2O3. The three samples exhibit narrow size distribution with a majority on nanoparticles between 3 and 5 nm. Local EDX measurements clearly showed that the nanoparticles are bimetallic with the expected chemical composition and the measured global composition by ICP-OES. The surface composition and electronic properties of Pd and Sn on the γ-Al2O3 support were investigated by XPS, in particular the chemical state of palladium and tin after each step of thermal decomposition treatments (oxidation, reduction) by the XPS method has been carried out. The reducibility of the prepared bimetallic nanoparticles was measured by hydrogen temperature programmed reduction (TPR-H2). The temperature programmed reduction TPR-H2 experiments have confirmed the existence of strong surface interactions between Pd and Sn, as evidenced by hydrogen spillover of Pd to Sn (Pd-assisted reduction of oxygen precovered Sn). These results lead us to propose a mechanism for the formation of the bimetallic nanoparticles.
Collapse
|
49
|
Zhang N, Yan H, Li L, Wu R, Song L, Zhang G, Liang W, He H. Use of rare earth elements in single-atom site catalysis: A critical review — Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Takagi N, Ehara M, Sakaki S. Theoretical Study of NO Dissociative Adsorption onto 3d Metal Particles M 55 (M = Fe, Co, Ni, and Cu): Relation between the Reactivity and Position of the Metal Element in the Periodic Table. ACS OMEGA 2021; 6:4888-4898. [PMID: 33644596 PMCID: PMC7905950 DOI: 10.1021/acsomega.0c05838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
NO dissociative adsorption onto 3d metal particles M55 (M = Fe, Co, Ni, and Cu) was investigated theoretically using density functional theory computations. A transition state exists at higher energy in the Cu case but at lower energy in the Fe, Co, and Ni cases than the reactant (sum of M55 and NO), indicating that Cu55 is not reactive for NO dissociative adsorption because NO desorption occurs more easily than the N-O bond cleavage in this case, but Fe55, Co55, and Ni55 are reactive because NO desorption needs a larger destabilization energy than the N-O bond cleavage. This result agrees with the experimental findings. The energy of transition state E(TS) becomes higher in the order of Fe < Co < Ni ≪ Cu. Exothermicity E exo (relative energy to the reactant) decreases in the order of Fe > Co > Ni ≫ Cu. These results indicate that the reactivity for NO dissociative adsorption decreases kinetically and thermodynamically in this order. In addition, the E(TS) and E exo values show that 3d metal particles are more reactive than 4d metal particles when a comparison is made in the same group of the periodic table. Charge transfer (CT) from the metal particle to NO increases as the reaction proceeds. The CT quantity to NO at the TS increases in the order of Cu < Ni < Co < Fe, identical to the increasing order of reactivity. The negative charges of the N and O atoms of the product (N and O adsorbed M55) increase in the order of Ni < Co < Cu < Fe, identical to the increasing order of E exo except for the Cu case; in the Cu case, the discrepancy between the order of E exo and those of the N and O negative charges arises from the presence of valence 4s electron of Cu because it suppresses the CT from N and O to Cu55. From these results, one can infer that the d-valence band-top energy of M55 plays an important role in determining the reactivity for NO dissociative adsorption. Truly, the d valence orbital energy decreases in the order of Fe > Co > Ni ≫ Cu and the 3d metal > 4d metal in the same group of the periodic table, which reflects the dependence of reactivity on the metal element position in the periodic table.
Collapse
Affiliation(s)
- Nozomi Takagi
- Elements
Strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Masahiro Ehara
- Elements
Strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8245, Japan
- Institute
for Molecular Science, Okazaki 444-8585, Japan
| | - Shigeyoshi Sakaki
- Elements
Strategy Initiative for Catalysts and Batteries, Kyoto University, Goryo-Ohara 1-30, Nishikyo-ku, Kyoto 615-8245, Japan
| |
Collapse
|