1
|
Nourbakhsh A, Dinh CT. Updates on Tumor Biology in Vestibular Schwannoma. Otolaryngol Clin North Am 2023; 56:421-434. [PMID: 37121611 DOI: 10.1016/j.otc.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Vestibular schwannomas (VSs) are benign tumors that develop after biallelic inactivation of the neurofibromatosis type 2 (NF2) gene that encodes the tumor suppressor merlin. Merlin inactivation leads to cell proliferation by dysregulation of receptor tyrosine kinase signaling and other intracellular pathways. In VS without NF2 mutations, dysregulation of non-NF2 genes can promote pathways favoring cell proliferation and tumorigenesis. The tumor microenvironment of VS consists of multiple cell types that influence VS tumor biology through complex intercellular networking and communications.
Collapse
Affiliation(s)
- Aida Nourbakhsh
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Suite 579, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, 1475 Northwest 12th Avenue, Miami, FL 33136, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Suite 579, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, 1475 Northwest 12th Avenue, Miami, FL 33136, USA.
| |
Collapse
|
2
|
Bommakanti K, Seist R, Kukutla P, Cetinbas M, Batts S, Sadreyev RI, Stemmer-Rachamimov A, Brenner GJ, Stankovic KM. Comparative Transcriptomic Analysis of Archival Human Vestibular Schwannoma Tissue from Patients with and without Tinnitus. J Clin Med 2023; 12:jcm12072642. [PMID: 37048724 PMCID: PMC10095534 DOI: 10.3390/jcm12072642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/05/2023] Open
Abstract
Vestibular schwannoma (VS) is an intracranial tumor that commonly presents with tinnitus and hearing loss. To uncover the molecular mechanisms underlying VS-associated tinnitus, we applied next-generation sequencing (Illumina HiSeq) to formalin-fixed paraffin-embedded archival VS samples from nine patients with tinnitus (VS-Tin) and seven patients without tinnitus (VS-NoTin). Bioinformatic analysis was used to detect differentially expressed genes (DEG; i.e., ≥two-fold change [FC]) while correcting for multiple comparisons. Using RNA-seq analysis, VS-Tin had significantly lower expression of GFAP (logFC = −3.04), APLNR (logFC = −2.95), PREX2 (logFC = −1.44), and PLVAP (logFC = −1.04; all p < 0.01) vs. VS-NoTin. These trends were validated by using real-time RT-qPCR. At the protein level, immunohistochemistry revealed a trend for less PREX2 and apelin expression and greater expression of NLRP3 inflammasome and CD68-positive macrophages in VS-Tin than in VS-NoTin, suggesting the activation of inflammatory processes in VS-Tin. Functional enrichment analysis revealed that the top three protein categories—glycoproteins, signal peptides, and secreted proteins—were significantly enriched in VS-Tin in comparison with VS-NoTin. In a gene set enrichment analysis, the top pathway was allograft rejection, an inflammatory pathway that includes the MMP9, CXCL9, IL16, PF4, ITK, and ACVR2A genes. Future studies are needed to examine the importance of these candidates and of inflammation in VS-associated tinnitus.
Collapse
Affiliation(s)
- Krishna Bommakanti
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Richard Seist
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Otorhinolaryngology–Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Phanidhar Kukutla
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shelley Batts
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Gary J. Brenner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology–Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Li C, Li Z, Song L, Meng L, Xu G, Zhang H, Hu J, Li F, Liu C. GEFT Inhibits Autophagy and Apoptosis in Rhabdomyosarcoma via Activation of the Rac1/Cdc42-mTOR Signaling Pathway. Front Oncol 2021; 11:656608. [PMID: 34221974 PMCID: PMC8252888 DOI: 10.3389/fonc.2021.656608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy and apoptosis are dynamic processes that determine the fate of cells, and regulating these processes can treat cancer. GEFT is highly expressed in rhabdomyosarcoma (RMS), which accelerates the tumorigenicity and metastasis of RMS by activating Rac1/Cdc42 signaling, but the regulatory mechanisms of autophagy and apoptosis are unclear. In our study, we found that the RMS tissues had high Rac1, Cdc42, mTOR, and Bcl-2 expression levels and low Beclin1, LC3, and Bax expression levels compared with the normal striated muscle tissues (P < 0.05). In addition, multivariate analysis has proven that Rac1 is an independent prognostic factor (P < 0.05), and the high expression level of the Beclin1 protein was closely associated with the tumor diameter of the RMS patients (P = 0.044), whereas the high expression level of the LC3 protein was associated with the clinical stage of the RMS patients (P = 0.027). Furthermore, GEFT overexpression could inhibit autophagy and apoptosis in RMS. A Rac1/Cdc42 inhibitor was added, and the inhibition of autophagy and apoptosis decreased. Rac1 and Cdc42 could regulate mTOR to inhibit autophagy and apoptosis in RMS. Overall, these studies demonstrated that the GEFT–Rac1/Cdc42–mTOR pathway can inhibit autophagy and apoptosis in RMS and provide evidence for innovative treatments.
Collapse
Affiliation(s)
- Chunsen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Lingxie Song
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Guixuan Xu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Haijun Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jianming Hu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Xu Z, Han Y, Li X, Yang R, Song L. Molecular cloning and characterization of DjRac1, a novel small G protein gene from planarian Dugesia japonica. Biochem Biophys Res Commun 2020; 526:865-870. [PMID: 32278548 DOI: 10.1016/j.bbrc.2020.03.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 01/13/2023]
Abstract
Rac proteins are classified as a subfamily of the Rho family of small G proteins. They are important molecular switches which act as key signal transducers regulating a wide variety of processes in the cell. DjRac1, a novel Rac gene from planarian Dugesia japonica was cloned by RACE method and characterized. This cDNA contains 851 bp with a putative open reading frame of 190 amino acids. It has a predicted molecular mass of 21.12 kDa and an isoelectric point of 8.42. Whole-mount in situ hybridization and relative quantitative real-time PCR were used to study the spatial and temporal expression pattern of DjRac1 from 1 to 7 days in the regenerating planarians. Results showed that the expression of DjRac1 was concentrated in the blastema and the transcription level of DjRac1 was significantly upregulated after amputation within three days, suggesting DjRac1 might participate in the process of regeneration in planarian.
Collapse
Affiliation(s)
- Zhenbiao Xu
- College of Life Science, Shandong University of Technology, China
| | - Yahong Han
- College of Life Science, Shandong University of Technology, China
| | - Xiaomin Li
- College of Life Science, Shandong University of Technology, China
| | - Rui Yang
- College of Life Science, Shandong University of Technology, China
| | - Linxia Song
- College of Life Science, Shandong University of Technology, China.
| |
Collapse
|