1
|
Zheng YN, Zheng YL, Wang XQ, Chen PJ. Role of Exercise on Inflammation Cytokines of Neuropathic Pain in Animal Models. Mol Neurobiol 2024; 61:10288-10301. [PMID: 38714582 DOI: 10.1007/s12035-024-04214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/25/2024] [Indexed: 05/10/2024]
Abstract
Neuropathic pain (NP) resulting from a lesion or disease of the somatosensory system can lead to loss of function and reduced life quality. Neuroinflammation plays a vital role in the development and maintenance of NP. Exercise as an economical, effective, and nonpharmacological treatment, recommended by clinical practice guidelines, has been proven to alleviate chronic NP. Previous studies have shown that exercise decreases NP by modifying inflammation; however, the exact mechanisms of exercise-mediated NP are unclear. Therefore, from the perspective of neuroinflammation, this review mainly discussed the effects of exercise on inflammatory cytokines in different parts of NP conduction pathways, such as the brain, spinal cord, dorsal root ganglion, sciatic nerve, and blood in rat/mice models. Results suggested that exercise training could modulate neuroinflammation, inhibit astrocyte glial cell proliferation and microglial activation, alter the macrophage phenotype, reduce the expression of proinflammatory cytokines, increase anti-inflammatory cytokine levels, and positively modulate the state of the immune system, thereby relieving NP.
Collapse
Affiliation(s)
- Ya-Nan Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China
- Rehabilitation Treatment Center, The First Rehabilitation Hospital of Shanghai, Shanghai, 200090, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China
| | - Xue-Qiang Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, China.
| |
Collapse
|
2
|
Zhu CC, Zheng YL, Gong C, Chen BL, Guo JB. Role of Exercise on Neuropathic Pain in Preclinical Models: Perspectives for Neuroglia. Mol Neurobiol 2024:10.1007/s12035-024-04511-y. [PMID: 39316356 DOI: 10.1007/s12035-024-04511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
The benefits of exercise on neuropathic pain (NP) have been demonstrated in numerous studies. In recent studies, inflammation, neurotrophins, neurotransmitters, and endogenous opioids are considered as the main mechanisms. However, the role of exercise in alleviating NP remains unclear. Neuroglia, widely distributed in both the central and peripheral nervous systems, perform functions such as support, repair, immune response, and maintenance of normal neuronal activity. A large number of studies have shown that neuroglia play an important role in the occurrence and development of NP, and exercise can alleviate NP by regulating neuroglia. This article reviewed the involvement of neuroglia in the development of NP and their role in the exercise treatment of NP, intending to provide a theoretical basis for the exercise treatment strategy of NP.
Collapse
Affiliation(s)
- Chen-Chen Zhu
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Chan Gong
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Bing-Lin Chen
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Jia-Bao Guo
- The Second School of Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
3
|
da Cunha Lima EA, Toledo LV, Correia MDL, de Almeida Pereira D, Caetano RO, Faria TB, de Castro Moura C, Krempser P, Braga LM. Effect of a Non-pharmacological Intervention on Vaccine-related Pain: Randomized Clinical Trial. Pain Manag Nurs 2024:S1524-9042(24)00154-1. [PMID: 38772758 DOI: 10.1016/j.pmn.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Acute pain during vaccine administration is an expected event; however, some strategies, such as the use of high frequency vibration devices associated with cryotherapy, may minimize it. AIM Evaluate the effect of high frequency vibration associated with cryotherapy on the level of pain related to the administration of influenza vaccine by intramuscular route in adults. METHOD A randomized clinical trial was conducted with 350 adults who received the influenza vaccine. Participants allocated to the intervention group used a high-frequency vibration device associated with cryotherapy during vaccination, and those in the control group administered the vaccine according to the service routine. RESULTS Mean self-reported pain after vaccination of participants who used the device was lower (1.5 ±1.7) when compared to those who did not use it (1.9 ±1.9) (p = .041). There was an association of higher levels of pain after vaccination with participants in the control group (p = .011), females (p = .042), with higher level of pain expected with vaccination (p < .001) and higher level of anxiety before (p < .001) and after vaccination (p = .001). CONCLUSIONS The use of high frequency vibration associated with cryotherapy has been shown to be a viable non-pharmacological intervention for the reduction of pain associated with influenza vaccination in adults.
Collapse
Affiliation(s)
| | - Luana Vieira Toledo
- Department of Medicine and Nursing. Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | | | | | - Paula Krempser
- Child Department and Public Health, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Luciene Muniz Braga
- Department of Medicine and Nursing. Federal University of Viçosa, Viçosa, Brazil
| |
Collapse
|
4
|
The Role of Physical Exercise and Rehabilitative Implications in the Process of Nerve Repair in Peripheral Neuropathies: A Systematic Review. Diagnostics (Basel) 2023; 13:diagnostics13030364. [PMID: 36766469 PMCID: PMC9914426 DOI: 10.3390/diagnostics13030364] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The various mechanisms involved in peripheral nerve regeneration, induced by exercise and electrical nerve stimulation, are still unclear. OBJECTIVE The aim of this review was to summarize the influence of physical exercise and/or electrical stimulation on peripheral nerve repair and regeneration and the variation of impact of intervention depending on timing, as well as kind and dosage of the intervention. A literature survey was conducted on PubMed, Scopus, and Web of Science, between February 2021 to July 2021, with an update in September 2022. METHODOLOGY The literature search identified 101,386 articles with the keywords: "peripheral nerve" OR "neuropathy" AND "sprouting" OR "neuroapraxia" OR "axonotmesis" OR "neurotmesis" OR "muscle denervation" OR "denervated muscle" AND "rehabilitation" OR "physical activity" OR "physical exercise" OR "activity" OR "electrical stimulation". A total of 60 publications were included. Eligible studies were focused on evaluating the process of nerve repair (biopsy, electromyographic parameters or biomarker outcomes) after electrical stimulation or physical exercise interventions on humans or animals with peripheral sensory or motor nerve injury. SYNTHESIS This study shows that the literature, especially regarding preclinical research, is mainly in agreement that an early physical program with active exercise and/or electrical stimulation promotes axonal regenerative responses and prevents maladaptive response. This was evaluated by means of changes in electrophysiological recordings of CMAPs for latency amplitude, and the sciatic functional index (SFI). Furthermore, this type of activity can cause an increase in weight and in muscle fiber diameter. Nevertheless, some detrimental effects of exercising and electrical stimulation too early after nerve repair were recorded. CONCLUSION In most preclinical studies, peripheral neuropathy function was associated with improvements after physical exercise and electrical stimulation. For humans, too little research has been conducted on this topic to reach a complete conclusion. This research supports the need for future studies to test the validity of a possible rehabilitation treatment in humans in cases of peripheral neuropathy to help nerve sprouting.
Collapse
|
5
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
6
|
de Moura JA, de Morais J, Barbosa SMN, Ferreira MC, de Sousa Neto IV, Leite HR, Oliveira MX, Gaiad TP, Santos AP. Negative neuromuscular and functional repercussion of forced swimming after axonotmesis. J Exerc Rehabil 2022; 18:179-186. [PMID: 35846236 PMCID: PMC9271644 DOI: 10.12965/jer.2244150.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve injuries are cause of sensory disturbances and in functional abilities, and are associated personal and social costs. Strategies that maximize nerve regeneration and functional recovery are necessary, the exercise is an option. This study evaluated the effects of forced swimming exercise on neuromuscular histomorphometry and on functional recovery in a median nerve crush model. Sixteen Wistar rats underwent median nerve crush and were divided into control group (CG) and swimming group (SG). The forced swimming protocol started one week after the injury and was performed for 1 hr a day, 5 days per week, for 2 weeks. The rats swam with an overload of 5% and 10% of body weight in the first and second week, respectively. The functional recovery was assessed in three moments using the grasping test. On day 21, fragments of the median nerve and of the forearm flexors muscles were removed for histomorphometric analysis. The SG had functional recovery impaired (P<0.001) and presented lower myelinated fibers number, fiber and axon minimal diameter, myelin thickness and g-ratio in the proximal e distal segments of the median nerve (P<0.005) and area muscle fiber (P<0.005) than CG. Also, the SG presented a number of capillaries in the proximal segments of the median nerve greater than CG (P<0.005). The exercise protocol used in this study impaired the regeneration of the median nerve and negatively influenced the functional recovery.
Collapse
Affiliation(s)
- Júlia Araújo de Moura
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Jaqueline de Morais
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Samara Maria Neves Barbosa
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Marcílio Coelho Ferreira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | | | - Hércules Ribeiro Leite
- Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Murilo Xavier Oliveira
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Thaís Peixoto Gaiad
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Ana Paula Santos
- Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
- Corresponding author: Ana Paula Santos, Departamento de Fisioterapia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, CEP 39100-000, Brazil,
| |
Collapse
|
7
|
Hsieh YL, Yang NP, Chen SF, Lu YL, Yang CC. Early Intervention of Cold-Water Swimming on Functional Recovery and Spinal Pain Modulation Following Brachial Plexus Avulsion in Rats. Int J Mol Sci 2022; 23:ijms23031178. [PMID: 35163098 PMCID: PMC8835039 DOI: 10.3390/ijms23031178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Brachial plexus avulsion (BPA) causes peripheral nerve injury complications with motor and sensory dysfunction of the upper limb. Growing evidence has shown an active role played by cold-water swimming (CWS) in alleviating peripheral neuropathic pain and functional recovery. This study examined whether CWS could promote functional recovery and pain modulation through the reduction of neuroinflammation and microglial overactivation in dorsal horn neurons at the early-stage of BPA. After BPA surgery was performed on rats, they were assigned to CWS or sham training for 5 min twice a day for two weeks. Functional behavioral responses were tested before and after BPA surgery, and each week during training. Results after the two-week training program showed significant improvements in BPA-induced motor and sensory loss (p < 0.05), lower inflammatory cell infiltration, and vacuole formation in injured nerves among the BPA-CWS group. Moreover, BPA significantly increased the expression of SP and IBA1 in dorsal horn neurons (p < 0.05), whereas CWS prevented their overexpression in the BPA-CWS group. The present findings evidenced beneficial rehabilitative effects of CWS on functional recovery and pain modulation at early-stage BPA. The beneficial effects are partially related to inflammatory suppression and spinal modulation. The synergistic role of CWS combined with other management approaches merits further investigation.
Collapse
Affiliation(s)
- Yueh-Ling Hsieh
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan;
- Correspondence: ; Tel.: +886-4-22053366 (ext. 7312)
| | - Nian-Pu Yang
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung 40763, Taiwan; (N.-P.Y.); (S.-F.C.); (C.-C.Y.)
| | - Shih-Fong Chen
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung 40763, Taiwan; (N.-P.Y.); (S.-F.C.); (C.-C.Y.)
| | - Yu-Lin Lu
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406040, Taiwan;
| | - Chen-Chia Yang
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung 40763, Taiwan; (N.-P.Y.); (S.-F.C.); (C.-C.Y.)
| |
Collapse
|
8
|
Running wheel exercise induces therapeutic and preventive effects on inflammatory stimulus-induced persistent hyperalgesia in mice. PLoS One 2020; 15:e0240115. [PMID: 33048957 PMCID: PMC7553300 DOI: 10.1371/journal.pone.0240115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic pain affects significant portion of the world's population and physical exercise has been extensively indicated as non-pharmacological clinical intervention to relieve symptoms in chronic pain conditions. In general, studies on pain chronification and physical exercise intervention have focused on neuropathic pain, although chronic pain commonly results from an original inflammatory episode. Based on this, the objective of the present study was to investigate the therapeutic and preventive effect of the running wheel exercise on the persistent hyperalgesia induced by repetitive inflammatory stimulus, a rodent model that simulates clinical conditions of chronic pain that persist even with no more inflammatory stimulus present. To evaluate the therapeutic effect of physical exercise, we first induced persistent hyperalgesia through 14 days of PGE2 hind paw injections and, after that, mice have access to the regular voluntary running wheel. To evaluate the preventive effect of physical exercise, we first left the mice with access to the regular voluntary running wheel and, after that, we performed 14 days of PGE2 hind paw injection. Our results showed that voluntary running wheel exercise reduced persistent mechanical and chemical hyperalgesia intensity induced by repetitive inflammatory stimulus. In addition, we showed that this therapeutic effect is long-lasting and is observed even if started belatedly, i.e. two weeks after the development of hyperalgesia. Also, our results showed that voluntary running wheel exercise absolutely prevented persistent mechanical and chemical hyperalgesia induction. We can conclude that physical exercise has therapeutic and preventive effect on inflammatory stimulus-induced persistent hyperalgesia. Our data from animal experiments bypass placebo effects bias of the human studies and reinforce physical exercise clinical recommendations to treat and prevent chronic pain.
Collapse
|