1
|
Wan C, Pei J, Wang D, Hu J, Tang Z, Zhao W. Identification of m 6A methylation-related genes in cerebral ischaemia‒reperfusion of Breviscapus therapy based on bioinformatics methods. BMC Med Genomics 2023; 16:210. [PMID: 37670341 PMCID: PMC10478429 DOI: 10.1186/s12920-023-01651-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Cerebral ischaemia‒reperfusion (I/R) frequently causes late-onset neuronal damage. Breviscapine promotes autophagy in microvascular endothelial cells in I/R and can inhibit oxidative damage and apoptosis. However, the mediation mechanism of breviscapine on neuronal cell death is unclear. METHODS First, transcriptome sequencing was performed on three groups of mice: the neuronal normal group (Control group), the oxygen-glucose deprivation/ reoxygenation group (OGD/R group) and the breviscapine administration group (Therapy group). Differentially expressed genes (DEGs) between the OGD/R and control groups and between the Therapy and OGD/R groups were obtained by the limma package. N6-methyladenosine (m6A) methylation-related DEGs were selected by Pearson correlation analysis. Then, prediction and confirmation of drug targets were performed by Swiss Target Prediction and UniProt Knowledgebase (UniProtKB) database, and key genes were obtained by Pearson correlation analysis between m6A-related DEGs and drug target genes. Next, gene set enrichment analysis (GSEA) and Ingenuity pathway analysis (IPA) were used to obtain the pathways of key genes. Finally, a circRNA-miRNA‒mRNA network was constructed based on the mRNAs, circRNAs and miRNAs. RESULTS A total of 2250 DEGs between the OGD/R and control groups and 757 DEGs between the Therapy and OGD/R groups were selected by differential analysis. A total of 7 m6A-related DEGs, including Arl4d, Gm10653, Gm1113, Kcns3, Olfml2a, Stk26 and Tfcp2l1, were obtained by Pearson correlation analysis. Four key genes (Tfcp2l1, Kcns3, Olfml2a and Arl4d) were acquired, and GSEA showed that these key genes significantly participated in DNA repair, e2f targets and the g2m checkpoint. IPA revealed that Tfcp2l1 played a significant role in human embryonic stem cell pluripotency. The circRNA-miRNA‒mRNA network showed that mmu_circ_0001258 regulated Tfcp2l1 by mmu-miR-301b-3p. CONCLUSIONS In conclusion, four key genes, Tfcp2l1, Kcns3, Olfml2a and Arl4d, significantly associated with the treatment of OGD/R by breviscapine were identified, which provides a theoretical basis for clinical trials.
Collapse
Affiliation(s)
- Cheng Wan
- Department of Interventional Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Dan Wang
- Department of Organ Transplantation Centre, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jihong Hu
- Department of Interventional Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
| | - Wei Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
| |
Collapse
|
2
|
Lv S, Yang H, Jing P, Song H. α-tocopherol pretreatment alleviates cerebral ischemia-reperfusion injury in rats. CNS Neurosci Ther 2022; 28:964-970. [PMID: 35301808 PMCID: PMC9062554 DOI: 10.1111/cns.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shitao Lv
- Department of Emergency, Yantaishan Hospital, Yantai, China
| | - Haiyan Yang
- Department of Emergency, Yantaishan Hospital, Yantai, China
| | | | - Haiying Song
- Department of Gynecology, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
3
|
Guo S, Mangal R, Dandu C, Geng X, Ding Y. Role of Forkhead Box Protein O1 (FoxO1) in Stroke: A Literature Review. Aging Dis 2022; 13:521-533. [PMID: 35371601 PMCID: PMC8947839 DOI: 10.14336/ad.2021.0826] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Stroke is one of the most prevalent causes of death around the world. When a stroke occurs, many cellular signaling cascades and regulators are activated, which results in severe cellular dysfunction and debilitating long-term disability. One crucial regulator of cell fate and function is mammalian Forkhead box protein O1 (FoxO1). Many studies have found FoxO1 to be implicated in many cellular processes, including regulating gluconeogenesis and glycogenolysis. During a stroke, modifications of FoxO1 have been linked to a variety of functions, such as inducing cell death and inflammation, inhibiting oxidative injury, affecting the blood brain barrier (BBB), and regulating hepatic gluconeogenesis. For these functions of FoxO1, different measures and treatments were applied to FoxO1 after ischemia. However, the subtle mechanisms of post-transcriptional modification and the role of FoxO1 are still elusive and even contradictory in the development of stroke. The determination of these mechanisms will lead to further enlightenment for FoxO1 signal transduction and the identification of targeted drugs. The regulation and function of FoxO1 may provide an important way for the prevention and treatment of diseases. Overall, the functions of FoxO1 are multifactorial, and this paper will summarize all of the significant pathways in which FoxO1 plays an important role during stroke damage and recovery.
Collapse
Affiliation(s)
- Sichao Guo
- 1Luhe Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ruchi Mangal
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Chaitu Dandu
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Xiaokun Geng
- 1Luhe Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,2Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yuchuan Ding
- 3Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Li F, Gao J, Kohls W, Geng X, Ding Y. Perspectives on benefit of early and prereperfusion hypothermia by pharmacological approach in stroke. Brain Circ 2022; 8:69-75. [PMID: 35909706 PMCID: PMC9336590 DOI: 10.4103/bc.bc_27_22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Stroke kills or disables approximately 15 million people worldwide each year. It is the leading cause of brain injury, resulting in persistent neurological deficits and profound physical handicaps. In spite of over 100 clinical trials, stroke treatment modalities are limited in applicability and efficacy, and therefore, identification of new therapeutic modalities is required to combat this growing problem. Poststroke oxidative damage and lactic acidosis are widely-recognized forms of brain ischemia/reperfusion injury. However, treatments directed at these injury mechanisms have not been effective. In this review, we offer a novel approach combining these well-established damage mechanisms with new insights into brain glucose handling. Specifically, emerging evidence of brain gluconeogenesis provides a missing link for understanding oxidative injury and lactate toxicity after ischemia. Therefore, dysfunctional gluconeogenesis may substantially contribute to oxidative and lactate damage. We further review that hypothermia initiated early in ischemia and before reperfusion may ameliorate gluconeogenic dysfunction and subsequently provide an important mechanism of hypothermic protection. We will focus on the efficacy of pharmacologically assisted hypothermia and suggest a combination that minimizes side effects. Together, this study will advance our knowledge of basic mechanisms of ischemic damage and apply this knowledge to develop new therapeutic strategies that are desperately needed in the clinical treatment of stroke.
Collapse
Affiliation(s)
- Fengwu Li
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Jie Gao
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Wesley Kohls
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Neurology, China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2022; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
6
|
Short-duration hypothermia completed prior to reperfusion prevents intracranial pressure elevation following ischaemic stroke in rats. Sci Rep 2021; 11:22354. [PMID: 34785754 PMCID: PMC8595681 DOI: 10.1038/s41598-021-01838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/08/2022] Open
Abstract
Reperfusion therapies re-establish blood flow after arterial occlusion and improve outcome for ischaemic stroke patients. Intracranial pressure (ICP) elevation occurs 18-24 h after experimental stroke. This elevation is prevented by short-duration hypothermia spanning the time of reperfusion. We aimed to determine whether hypothermia-rewarming completed prior to reperfusion, also prevents ICP elevation 24 h post-stroke. Transient middle cerebral artery occlusion was performed on male outbred Wistar rats. Sixty-minute hypothermia to 33 °C, followed by rewarming was induced prior to reperfusion in one group, and after reperfusion in another group. Normothermia controls received identical anaesthesia protocols. ΔICP from pre-stroke to 24 h post-stroke was measured, and infarct volumes were calculated. Rewarming pre-reperfusion prevented ICP elevation (ΔICP = 0.3 ± 3.9 mmHg vs. normothermia ΔICP = 5.2 ± 2.1 mmHg, p = 0.02) and reduced infarct volume (pre-reperfusion = 78.6 ± 23.7 mm3 vs. normothermia = 125.1 ± 44.3 mm3, p = 0.04) 24 h post-stroke. There were no significant differences in ΔICP or infarct volumes between hypothermia groups rewarmed pre- or post-reperfusion. Hypothermia during reperfusion is not necessary for prevention of ICP rise or infarct volume reduction. Short-duration hypothermia may be an applicable early treatment strategy for stroke patients prior to- during-, and after reperfusion therapy.
Collapse
|
7
|
Han Z, Zhao W, Lee H, Wills M, Tong Y, Cheng Z, Dai Q, Li X, Wang Q, Geng X, Ji X, Ding Y. Remote Ischemic Conditioning With Exercise (RICE)-Rehabilitative Strategy in Patients With Acute Ischemic Stroke: Rationale, Design, and Protocol for a Randomized Controlled Study. Front Neurol 2021; 12:654669. [PMID: 34012417 PMCID: PMC8126608 DOI: 10.3389/fneur.2021.654669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/15/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Exercise rehabilitation is an effective therapy in reducing the disability rate after stroke and should be carried out as early as possible. However, very early rehabilitation exercise exacerbates brain injury and is difficult to conduct in stroke patients due to their weakened and potentially disabled state. It is valuable to explore additional early rehabilitation strategies. Remote Ischemic Conditioning (RIC) is a novel therapy designed to protect vital organs from severe lethal ischemic injury by transient sublethal blood flow to non-vital organs, including the distal limbs, in order to induce endogenous protection. RIC has previously been conducted post-stroke for neuroprotection. However, whether combined early RIC and exercise (RICE) therapy enhances stroke rehabilitation remains to be determined. Methods: This is a single-center, double-blinded, randomized controlled trial that will enroll acute ischemic stroke patients within 24 h of symptom onset or symptom exacerbation. All enrolled patients will be randomly assigned to either the RICE group (exercise with RIC) or the control group (exercise with sham RIC) at a ratio of 1:1, with 20 patients in each group. Both groups will receive RIC or sham RIC within 24 h after stroke onset or symptom exacerbation, once a day, for 14 days. All patients will begin exercise training on the fourth day, twice a day, for 11 days. Their neurological function [Modified Rankin Scale (mRS) score, National Institutes of Health Stroke Scale (NIHSS) score, Barthel Index, and walking ability], infarct volume (nuclear magnetic resonance, MRI), and adverse events will be evaluated at different time points in their post-stroke care. Results: The primary outcome is safety, measured by the incidence of any serious RICE-related adverse events and decreased adverse events during hospitalization. The secondary outcome is a favorable prognosis within 90 days (mRS score < 2), determined by improvements in the mRS score, NIHSS score, Barthel Index, walking ability after 90 days, and infarct volume after 12 ± 2 days. Conclusion: This study is a prospective randomized controlled trial to determine the rehabilitative effect of early RIC followed by exercise on patients with acute ischemic stroke. Trial Registration:www.chictr.org.cn, identifier: ChiCTR2000041042
Collapse
Affiliation(s)
- Zhenzhen Han
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hangil Lee
- School of Medicine, Wayne State University, Detroit, MI, United States
| | - Melissa Wills
- School of Medicine, Wayne State University, Detroit, MI, United States
| | - Yanna Tong
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhe Cheng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qingqing Dai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Li
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qingzhu Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
8
|
Lv S, Zhao W, Rajah GB, Dandu C, Cai L, Cheng Z, Duan H, Dai Q, Geng X, Ding Y. Rapid Intervention of Chlorpromazine and Promethazine for Hibernation-Like Effect in Stroke: Rationale, Design, and Protocol for a Prospective Randomized Controlled Trial. Front Neurol 2021; 12:621476. [PMID: 33815250 PMCID: PMC8010657 DOI: 10.3389/fneur.2021.621476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Following an acute ischemic stroke (AIS), rapidly initiated reperfusion therapies [i. e., intravenous thrombolysis (IVT) and endovascular treatment (EVT)] demonstrate robust clinical efficacy. However, only a subset of these patients can benefit from these therapies due to their short treatment windows and potential complications. In addition, many patients despite successful reperfusion still have unfavorable outcomes. Thus, neuroprotection strategies are urgently needed for AIS patients. Chlorpromazine and promethazine (C+P) have been employed in clinical practice for antipsychotic and sedative purposes. A clinical study has also shown a neuroprotective effect of C+P on patients with cerebral hemorrhage and subarachnoid hemorrhage. The safety, feasibility, and preliminary efficacy of intravenous administration of C+P in AIS patients within 24 h of onset will be elucidated. Methods: A prospective randomized controlled trial is proposed with AIS patients. Participants will be randomly allocated to an intervention group and a control group with a 1:1 ratio (n = 30) and will be treated with standard therapies according to the current stroke guidelines. Participants allocated to the intervention group will receive intravenous administration of C+P (chlorpromazine 50 mg and promethazine 50 mg) within 24 h of symptom onset. The primary outcome is safety (mainly hypotension), while the secondary outcomes include changes in functional outcome and infarction volume. Discussions: This study on Rapid Intervention of Chlorpromazine and Promethazine for Hibernation-like Effect in Stroke (RICHES) will be the first prospective randomized controlled trial to ascertain the safety, feasibility, and preliminary efficacy of intravenous C+P as a neuroprotection strategy in AIS patients. These results will provide parameters for future studies, provide insights into treatment effects, and neuroprotection with phenothiazine in AIS. Clinical Trial Registration:www.chictr.org.cn, identifier: ChiCTR2000038727.
Collapse
Affiliation(s)
- Shuyu Lv
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wenbo Zhao
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gary B Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Neurosurgery, Munson Medical Center, Traverse City, MI, United States
| | - Chaitu Dandu
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Lipeng Cai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zhe Cheng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Honglian Duan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qingqing Dai
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, MI, United States
| |
Collapse
|
9
|
Lee H, Ding Y. Temporal limits of therapeutic hypothermia onset in clinical trials for acute ischemic stroke: How early is early enough? Brain Circ 2020; 6:139-144. [PMID: 33210036 PMCID: PMC7646398 DOI: 10.4103/bc.bc_31_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 01/22/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide, and yet, current treatment is limited to thrombolysis through either t-PA or mechanical thrombectomy. While therapeutic hypothermia has been adopted in clinical contexts such as neuroprotection after cardiac resuscitation and neonatal hypoxic-ischemic encephalitis, it is yet to be used in the context of ischemic stroke. The lack of ameliorative effect in ischemic stroke patients may be tied to the delayed cooling induction onset. In the trials where the cooling was initiated with significant delay (mostly systemic cooling methods), minimal benefit was observed; on the other hand, when cooling was initiated very early (mostly selective cooling methods), there was significant efficacy. Another timing factor that may play a role in amelioration may be the onset of cooling relative to thrombolysis therapy. Current understanding of the pathophysiology of acute ischemic injury and ischemia-reperfusion injury suggests that hypothermia before thrombolysis may be the most beneficial compared to cooling initiation during or after reperfusion. As many of the systemic cooling methods tend to require longer induction periods and extensive, separate procedures from thrombolysis therapy, they are generally delayed to hours after recanalization. On the other hand, selective cooling was generally performed simultaneously to thrombolysis therapy. As we conduct and design therapeutic hypothermia trials for stroke patients, the key to their efficacy may lie in quick and early cooling induction, both respective to the symptom onset and thrombolysis therapy.
Collapse
Affiliation(s)
- Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|
10
|
Zhao W, Wu C, Dornbos D, Li S, Song H, Wang Y, Ding Y, Ji X. Multiphase adjuvant neuroprotection: A novel paradigm for improving acute ischemic stroke outcomes. Brain Circ 2020; 6:11-18. [PMID: 32166195 PMCID: PMC7045534 DOI: 10.4103/bc.bc_58_19] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/29/2019] [Accepted: 01/17/2020] [Indexed: 12/24/2022] Open
Abstract
While several large pivotal clinical trials recently revealed a substantial benefit of endovascular thrombectomy for acute ischemic stroke (AIS) caused by large-vessel occlusion, many patients still experience mediocre prognosis. Enlargement of the ischemic core, failed revascularization, incomplete reperfusion, distal embolization, and secondary reperfusion injury substantially impact the salvaging of brain tissue and the functional outcomes of AIS. Here, we propose novel concept of “Multiphase Adjuvant Neuroprotection” as a new paradigm that may help guide our search for adjunctive treatments to be used together with thrombectomy. The premise of multiphase adjuvant neuroprotection is based on the diverse and potentially nonoverlapping pathophysiologic mechanisms that are triggered before, during, and after thrombectomy therapies. Before thrombectomy, strategies should focus on preventing the growth of the ischemic core; during thrombectomy, improving recanalization while reducing distal embolization and maximizing reperfusion are of significant importance; after reperfusion, strategies should focus on seeking targets to reduce secondary reperfusion injury. The concept of multiphase adjuvant neuroprotection, wherein different strategies are employed throughout the various phases of clinical care, might provide a paradigm to minimize the final infarct size and improve functional outcome in AIS patients treated with thrombectomy. With the success of thrombectomy in selected AIS patients, there is now an opportunity to revisit stroke neuroprotection. Notably, if the underlying mechanisms of these neuroprotective strategies are identified, their role in the distinct phases will provide further avenues to improve patient outcomes of AIS.
Collapse
Affiliation(s)
- Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - David Dornbos
- Department of Neurological Surgery, Semmes-Murphey Clinic and University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiqing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Wang X, Tian X, Pei LL, Niu PP, Guo Y, Hu R, Liu K, Tian M, Li Y, Wang C, Wang X, Xu Y, Song B. The Association Between Serum Apelin-13 and the Prognosis of Acute Ischemic Stroke. Transl Stroke Res 2020; 11:700-707. [PMID: 31965512 DOI: 10.1007/s12975-019-00769-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/28/2022]
Abstract
While a number of studies have reported an association between apelin-13 and ischemic stroke, few have verified its clinical effect. We investigated the prognostic value of serum apelin-13 levels in patients with acute ischemic stroke (AIS). We prospectively recruited 244 AIS patients within 24 h after stroke onset, and 167 healthy controls. We assessed the serum apelin-13 levels using ELISA, and the severity of AIS using the National Institutes of Health Stroke Scale (NIHSS). The primary outcomes included death or major disability (modified Rankin Scale score, 3-6) and major disability (modified Rankin Scale score, 3-5). Secondary outcomes included recurrent stroke and combined events (all-cause death, or cardiovascular and cerebrovascular events). We found that the serum apelin-13 levels in the patients (38.63 ng/mL (interquartile range [IQR], 29.86-50.99)) were lower than those in the healthy controls (42.50 ng/mL [IQR, 31.25-59.17]) (P = 0.017). Patients with a NIHSS score ≤ 3 had higher apelin-13 levels than those with a NIHSS score > 3 (P = 0.048). At the 3-month follow-up, multivariate logistic regression analysis indicated an association between apelin-13 and death or major disability (OR 0.31; 95% CI 0.11-0.86; P = 0.024) and major disability (OR 0.32; 95% CI 0.11-0.90; P = 0.030). At the 1-year follow-up, the patients with high apelin-13 levels showed a lower incidence of stroke and combined events (Log-rank test P < 0.05). Our findings indicate that serum apelin-13 may be a potential prognostic biomarker for AIS.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Xuan Tian
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Lu-Lu Pei
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Peng-Peng Niu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Yinan Guo
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Ruiyao Hu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Kai Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Mengke Tian
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Youfeng Li
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Chunhui Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Xin Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China
| | - Yuming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China.
| | - Bo Song
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou, 450052, China.
| |
Collapse
|