1
|
Hu Y, Huang H, Jiang Y, Zhang J, Zhang Y, Tian Y, Zhang Q. Liraglutide improves sevoflurane-induced postoperative cognitive dysfunction via activating autophagy and inhibiting apoptosis. Aging (Albany NY) 2024; 16:3763-3772. [PMID: 38364258 PMCID: PMC10929805 DOI: 10.18632/aging.205558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Postoperative cognitive dysfunction (POCD) is a common postoperative complication in elderly patients. Liraglutide (LRG) has high homology (97%) with natural glucagon like peptide-1, and it has been proved to be effective in some nervous system diseases. Whether LRG could regulate POCD has not been reported. METHODS Sevoflurane (Sev) was used to simulate postoperative cognitive dysfunction (POCD) model. Morris water maze test was performed to evaluate the memory ability and neurological function of rats. Escape latency, swim distance, crossing platform times, average velocity, and targeting quadrant time were analyzed. The cell apoptosis, mRNA and protein expression were measured through flow cytometry, PCR, and western blotting, respectively. RESULTS LRG significantly improved the memory ability and neurological function of Sev-treated rats, but 3-MA reversed the effects of LRG. LRG remarkably inhibited apoptosis but up-regulated autophagy related proteins both in vivo and in vitro levels. However, knocking down AMPK could markedly reverse the influence of LRG on apoptosis, autophagy, and cell apoptosis. CONCLUSIONS LRG induced autophagy activation can maintain cell homeostasis and promote cell survival by blocking the apoptotic pathway. LRG could improve Sev-induced POCD via activating autophagy, inhibiting apoptosis, and regulating AMPK/mTOR signaling pathway. This study provides a novel therapeutic strategy for the prevention and treatment of POCD.
Collapse
Affiliation(s)
- Ying Hu
- Department of Endocrinology and Metabolism, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, Jiangxi, China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, Jiangxi, China
| | - Haijin Huang
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yao Jiang
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jingling Zhang
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yang Zhang
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Ying Tian
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qin Zhang
- Department of Anesthesiology and Operative medicine, Medical Center of Anesthesiology and Pain, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
2
|
Gupta R, Mehan S, Chhabra S, Giri A, Sherawat K. Role of Sonic Hedgehog Signaling Activation in the Prevention of Neurological Abnormalities Associated with Obsessive-Compulsive Disorder. Neurotox Res 2022; 40:1718-1738. [PMID: 36272053 DOI: 10.1007/s12640-022-00586-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/15/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
The smoothened sonic hedgehog (Smo-Shh) pathway is one mechanism that influences neurogenesis, including brain cell differentiation and development during childhood. Shh signaling dysregulation leads to decreased target gene transcription, which contributes to increased neuronal excitation, apoptosis, and neurodegeneration, eventually leading to neurological deficits. Neuropsychiatric disorders such as OCD and related neurological dysfunctions are characterized by neurotransmitter imbalance, neuroinflammation, oxidative stress, and impaired neurogenesis, disturbing the cortico-striato-thalamo-cortical (CSTC) link neuronal network. Despite the availability of several treatments, such as selective serotonin reuptake inhibitors, some individuals may not benefit much from them. Several trials on the use of antipsychotics in the treatment of OCD have also produced inadequate findings. This evidence-based review focuses on a potential pharmacological approach to alleviating OCD and associated neuronal deficits by preventing neurochemical alterations, in which sonic hedgehog activators are neuroprotective, lowering neuronal damage while increasing neuronal maintenance and survival. As a result, stimulating SMO-Shh via its potential activators may have neuroprotective effects on neurological impairment associated with OCD. This review investigates the link between SMO-Shh signaling and the neurochemical abnormalities associated with the progression of OCD and associated neurological dysfunctions. Role of Smo-Shh signaling in serotonergic neurogenesis and in maintaining their neuronal identity. The Shh ligand activates two main transcriptional factors known as Foxa2 and Nkx2.2, which again activates another transcriptional factor, GATA (GATA2 and GATA3), in post mitotic precursor cells of serotonergic neurons-following increased expression of Pet-1 and Lmx1b after GATA regulates the expression of many serotonergic enzymes such as TPH2, SERT, VMAT, slc6a4, Htr1a, Htr1b (Serotonin receptor enzymes), and MAO that regulate and control the release of serotonin and maintain their neuronal identity after their maturation. Abbreviation: Foxa2: Forkhead box; GATA: Globin transcription factor; Lmx1b: LIM homeobox transcription factor 1 beta; TPH2: Tryptophan hydroxylase 2; Htr1a: Serotonin receptor 1a; Htr1b: Serotonin receptor 1b; SERT: Serotonin transporter; VMAT: Vesicular monoamine transporter; MAO: Monoamine oxidase.
Collapse
Affiliation(s)
- Ria Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kajal Sherawat
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
3
|
Ketamine administration ameliorates anesthesia and surgery‑induced cognitive dysfunction via activation of TRPV4 channel opening. Exp Ther Med 2022; 24:478. [PMID: 35761804 PMCID: PMC9214599 DOI: 10.3892/etm.2022.11405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/16/2022] [Indexed: 11/05/2022] Open
|
4
|
Gupta R, Mehan S, Sethi P, Prajapati A, Alshammari A, Alharbi M, Al-Mazroua HA, Narula AS. Smo-Shh Agonist Purmorphamine Prevents Neurobehavioral and Neurochemical Defects in 8-OH-DPAT-Induced Experimental Model of Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12030342. [PMID: 35326298 PMCID: PMC8946713 DOI: 10.3390/brainsci12030342] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Obsessive-compulsive disorder is a mental disorder characterized by repetitive, unwanted thoughts and behavior due to abnormal neuronal corticostriatal-thalamocortical pathway and other neurochemical changes. Purmorphamine is a smoothened-sonic-hedgehog agonist that has a protective effect against many neurological diseases due to its role in maintaining functional connectivity during CNS development and its anti-inflammatory and antioxidant properties. As part of our current research, we investigated the neuroprotective effects of PUR against behavioral and neurochemical changes in 8-hydroxy-2-(di-n-propylamino)-tetralin-induced obsessive-compulsive disorder in rats. Additionally, the effect of PUR was compared with the standard drug for OCD, i.e., fluvoxamine. The intra-dorsal raphe-nucleus injection of 8-OH-DPAT in rats for seven days significantly showed OCD-like repetitive and compulsive behavior along with increased oxidative stress, inflammation, apoptosis, as well as neurotransmitter imbalance. These alterations were dose-dependently attenuated by long-term purmorphamine treatment at 5 mg/kg and 10 mg/kg i.p. In this study, we assessed the level of various neurochemical parameters in different biological samples, including brain homogenate, blood plasma, and CSF, to check the drug’s effect centrally and peripherally. These effects were comparable to the standard oral treatment withfluvoxamine at 10 mg/kg. However, when fluvoxamine was given in combination with purmorphamine, there was a more significant restoration of these alterations than the individualtreatmentswithfluvoxamine and purmorphamine. All the above findings demonstrate that the neuroprotective effect of purmorphamine in OCD can be strong evidence for developing a new therapeutic target for treating and managing OCD.
Collapse
Affiliation(s)
- Ria Gupta
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
- Correspondence:
| | - Pranshul Sethi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
| | - Aradhana Prajapati
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (R.G.); (P.S.); (A.P.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (H.A.A.-M.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (H.A.A.-M.)
| | - Haneen A. Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (H.A.A.-M.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| |
Collapse
|
5
|
Wang Z, Liu T, Yin C, Li Y, Gao F, Yu L, Wang Q. Electroacupuncture Pretreatment Ameliorates Anesthesia and Surgery-Induced Cognitive Dysfunction via Activation of an α7-nAChR Signal in Aged Rats. Neuropsychiatr Dis Treat 2021; 17:2599-2611. [PMID: 34413646 PMCID: PMC8370114 DOI: 10.2147/ndt.s322047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Postoperative cognitive dysfunction (POCD) after anesthesia and surgery (AS) is a common complication in the elderly population. A cholinergic-dependent signal, the alpha7-nicotinic acetylcholine receptor (α7-nAChR), has been suggested to regulate cognitive processes in a variety of neurologic diseases. In the current study, we determined whether electroacupuncture (EA) pretreatment ameliorates AS-induced POCD in aged rats, as well as the underlying mechanism. METHODS Male Sprague-Dawley rats (20 months old) were randomly assigned to the following 5 groups (n=12): vehicle; POCD (tibial fracture surgery); EA plus POCD; EA plus POCD and alpha-bungarotoxin (α-BGT); and POCD plus α-BGT groups. Alpha-bungarotoxin (1 μg/kg), a selective antagonist of α7-nAChR, was administrated via intraperitoneal injection before EA. Thirty days post-AS, the Morris water maze and a novel objective recognition test were used to evaluate cognitive function. Neuronal amount, apoptosis, microglial activation, percentage of high mobility group box 1 (HMGB1)- and nuclear factor-κB (NF-κB)-positive microglia, and levels of HMGB-1 downstream factors, including NF-κB, interleukin-6 (IL-6), and IL-1β, were detected by Nissl staining, immunofluorescence, and Western blot assays. RESULTS EA pretreatment significantly increased crossing platform times and elevated the time with a novel object, restored the quantity of neurons, decreased TUNEL-positive neurons, alleviated activation of microglia, downregulated expression of HMGB1 and NF-κB in the microglia, and reduced levels of phosphor-NF-κB, IL-6, and IL-1β 35 days after AS, while α-BGT partially reversed these changes. CONCLUSION EA pretreatment improved AS-induced POCD in aged rats, and the underlying mechanism may be associated with inhibition of HMGB1-NF-κB via an α7-nAChR signal in the microglia.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China.,Department of Anesthesiology, Handan Central Hospital, Handan, Hebei, People's Republic of China
| | - Tianlin Liu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Chunping Yin
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Yanan Li
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Fang Gao
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Lili Yu
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| | - Qiujun Wang
- Department of Anesthesiology, The Third Hospital of Hebei Medical University, Shijiazhuang City, Hebei, People's Republic of China
| |
Collapse
|
6
|
Cao C, Deng F, Hu Y. Dexmedetomidine alleviates postoperative cognitive dysfunction through circular RNA in aged rats. 3 Biotech 2020; 10:176. [PMID: 32226705 PMCID: PMC7093639 DOI: 10.1007/s13205-020-2163-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/07/2020] [Indexed: 12/16/2022] Open
Abstract
Circular RNA (circRNA) has been well studied in many diseases, whereas their role in patients with postoperative cognitive dysfunction (POCD) remains largely unclear. Here, we investigated the therapeutic effects of dexmedetomidine (Dex) on POCD and analyzed the role of circRNA as well as the pathways that may be involved. The Morris water maze test demonstrated that POCD rats have a longer incubation period than the normal group, but the latency of POCD rats was significantly lower after Dex treatment. Moreover, HE staining showed that Dex improved hippocampal pathological changes. RNA sequencing showed 164 differentially expressed circRNAs between POCD and Dex groups; 74 were upregulated and 90 were downregulated in the Dex group. A total of 20,790 target genes for differentially expressed circRNAs were observed in RNAhybrid and Miranda databases. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the target genes of differentially expressed circRNAs are mainly focused on positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage, negative regulation of cell adhesion mediated by integrin, and response to cytokines and other function of life activities and involved in the P53 signaling pathway and nuclear factor kappa B (NF-κB) signaling pathway. Furthermore, the expression of five candidate circRNAs (circ-Shank3, circ-Cdc42bpa, circ-chrx-24658, cir-chr17-3642 and circ-Sgsm1) and target genes were consistent with the RNA sequencing results, which was verified by quantitative real-time polymerase chain reaction (qRT-PCR). These results indicate that circ-Shank3 participate in the process of Dex improved POCD through regulating the P53 and NF-κB signaling pathways and may potentially facilitate POCD treatment through the development of clinical drugs.
Collapse
Affiliation(s)
- Cao Cao
- Department of Anesthesiology, Donghu District, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 Jiangxi China
| | - Fumou Deng
- Department of Anesthesiology, Donghu District, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 Jiangxi China
| | - Yanhui Hu
- Department of Anesthesiology, Donghu District, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006 Jiangxi China
| |
Collapse
|