1
|
Li T, Zhang L, Cheng M, Hu E, Yan Q, Wu Y, Luo W, Su H, Yu Z, Guo X, Chen Q, Zheng F, Li H, Zhang W, Tang T, Luo J, Wang Y. Metabolomics integrated with network pharmacology of blood-entry constituents reveals the bioactive component of Xuefu Zhuyu decoction and its angiogenic effects in treating traumatic brain injury. Chin Med 2024; 19:131. [PMID: 39327620 PMCID: PMC11425933 DOI: 10.1186/s13020-024-01001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Xuefu Zhuyu decoction (XFZYD) has been extensively utilized to treat traumatic brain injury (TBI). However, the bioactive compounds and the underlying mechanisms have not yet been elucidated. OBJECTIVES This study aimed to investigate the bioactive constituents of XFYZD that are absorbed in the blood and the mechanisms in treating TBI. METHODS The study presents an integrated strategy in three steps to investigate the material basis and pharmacological mechanisms of XFZYD. The first step involves: (1) performing metabolomics analysis of XFZYD to obtain the main functions and targets; (2) screening the blood-entry ingredients and targets of XFZYD from databases; (3) obtaining the potential components targeting the key functions by integrated analysis of metabolomics and network pharmacology. The second step involves screening pharmacological effects with active ingredients in vitro. In the third step, the effects of the top active compound were validated in vivo, and the mechanisms were explored by protein antagonist experiments. RESULTS Metabolomics analysis revealed that XFZYD treated TBI mice mainly through affecting the functions of blood vessels. We screened 62 blood-entry ingredients of XFZYD by network pharmacology. Then, we focused on 39 blood-entry ingredients related to vascular genes enriched by XFZYD-responsive metabolites. Performing the natural products library, we verified that hydroxysafflor yellow A (HSYA), vanillin, ligustilide, paeoniflorin, and other substances promoted endothelial cell proliferation significantly compared to the control group. Among them, the efficacy of HSYA was superior. Further animal studies demonstrated that HSYA treatment alleviated neurological dysfunction in TBI mice by mNSS and foot fault test, and decreased neuronal damage by HE, nissl, and TUNEL staining. HSYA increased the density of cerebral microvessels, raised the expression of angiogenesis marker proteins VEGFA and CD34, and activated the PI3K/Akt/mTOR signaling pathway significantly. The angiogenic effects disappeared after the intervention of PI3K antagonist LY294002. CONCLUSION By applying a novel strategy of integrating network pharmacology of constituents absorbed in blood with metabolomics, the research screened HSYA as one of the top bioactive constituents of XFZYD, which stimulates angiogenesis by activating the PI3K/Akt/mTOR signaling pathway after TBI.
Collapse
Affiliation(s)
- Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Menghan Cheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - En Hu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China
| | - Qiuju Yan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Su
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xin Guo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Haigang Li
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, Hunan, People's Republic of China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China
| | - Jiekun Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurology of Integrated Chinese Medicine, Xiangya Jiangxi Hospital, Central South University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Meng X, Jin X, Wang L, Liu S, Chen S, Du K, Li J, Chang Y. A comprehensive review of the botany, ethnopharmacology, phytochemistry, pharmacology, quality control and other applications of Ligustici Rhizoma et Radix. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117687. [PMID: 38163554 DOI: 10.1016/j.jep.2023.117687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum sinense Oliv. and L. jeholense Nakai et Kitag. are globally recognized as medicinal botanical species, specifically the rhizomes and roots. These plant parts are collectively referred to as Ligustici Rhizoma et Radix (LReR), which is recorded in the Pharmacopoeia of the People's Republic of China (Ch. P). LReR enjoys widespread recognition in many countries such as China, Russia, Vietnam, and Korea. It is an herbal remedy traditionally employed for dispelling wind and cold, eliminating dampness, and alleviating pain. Numerous bioactive compounds have been successfully isolated and identified, displaying a diverse array of pharmacological activities and medicinal value. THE AIM OF THE REVIEW This review aims to primarily center on the botanical aspects, ethnopharmacology, phytochemistry, pharmacology, toxicity, quality control, and other applications of LReR to furnish a comprehensive and multidimensional foundation for future exploration and utilization. MATERIALS AND METHODS Relevant information about LReR was acquired from ancient books, doctoral and master's dissertations, Google Scholar, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), ScienceDirect, classical literature, and clinical reports. Several electronic databases were also incorporated. RESULTS In traditional usage, LReR had been traditionally employed for the treatment of anemofrigid headaches, colds, and joint pain. It possessed therapeutic properties for facial skin disorders, thereby facilitating skin regeneration. It has been subjected to comprehensive chemical analysis, resulting in the identification and isolation of 190 compounds, including phthalides, phenylpropanoids, flavonoids, phenolic acids, triterpenes, steroids, volatile oil, fatty acids, and other constituents. The pharmacological activities have been in-depth explored through modern in vivo and in vitro studies, confirming its anti-inflammatory, analgesic, and anti-melanin effects. Furthermore, it exhibited pharmacological activities such as antioxidant, anticancer, antibacterial, and vasodilatory properties. This study provides a basic to contribute to the advancement of research, medicinal applications and product development related to LReR. CONCLUSIONS Considering its traditional and contemporary applications, phytochemical composition, and pharmacological properties, LReR was regarded as a valuable botanical resource for pharmaceutical and pest control purposes. While certain constituents had demonstrated diverse pharmacological activities and application potential, further elucidation was required to fully understand their specific actions and underlying mechanisms. Hence, there was a need to conduct additional investigations to uncover its material foundation and mode of action.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xue Meng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytoc Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Hu E, Tang T, Li Y, Li T, Zhu L, Ding R, Wu Y, Huang Q, Zhang W, Wu Q, Wang Y. Spatial amine metabolomics and histopathology reveal localized brain alterations in subacute traumatic brain injury and the underlying mechanism of herbal treatment. CNS Neurosci Ther 2024; 30:e14231. [PMID: 37183394 PMCID: PMC10915989 DOI: 10.1111/cns.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
INTRODUCTION Spatial changes of amine metabolites and histopathology of the whole brain help to reveal the mechanism of traumatic brain injury (TBI) and treatment. METHODS A newly developed liquid microjunction surface sampling-tandem mass tag-ultra performance liquid chromatography-mass spectrometry technique is applied to profile brain amine metabolites in five brain regions after impact-induced TBI at the subacute stage. H&E, Nissl, and immunofluorescence staining are performed to spatially correlate microscopical changes to metabolic alterations. Then, bioinformatics, molecular docking, ELISA, western blot, and immunofluorescence are integrated to uncover the mechanism of Xuefu Zhuyu decoction (XFZYD) against TBI. RESULTS Besides the hippocampus and cortex, the thalamus, caudate-putamen, and fiber tracts also show differentiated metabolic changes between the Sham and TBI groups. Fourteen amine metabolites (including isomers such as L-leucine and L-isoleucine) are significantly altered in specific regions. The metabolic changes are well matched with the degree of neuronal damage, glia activation, and neurorestoration. XFZYD reverses the dysregulation of several amine metabolites, such as hippocampal Lys-Phe/Phe-Lys and dopamine. Also, XFZYD enhances post-TBI angiogenesis in the hippocampus and the thalamus. CONCLUSION This study reveals the local amine-metabolite and histological changes in the subacute stage of TBI. XFZYD may promote TBI recovery by normalizing amine metabolites and spatially promoting dopamine production and angiogenesis.
Collapse
Affiliation(s)
- En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - You‐mei Li
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunanChina
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Lin Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Ruo‐qi Ding
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Qing Huang
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Qian Wu
- College of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunanChina
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative MedicineXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
4
|
He D, Song Y, Xiao H, Shi S, Song H, Cui T, Ni T, Wang J, Ren X, Wei A. Ligustilide enhances pregnancy outcomes via improvement of endometrial receptivity and promotion of endometrial angiogenesis in rats. J Nat Med 2024; 78:42-52. [PMID: 37698739 DOI: 10.1007/s11418-023-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Ligustilide (LIG) is the main active ingredient of Angelica sinensis (Oliv.) Diels, which could promote focal angiogenesis to exert neuroprotection. However, there was no report that verified the exact effects of LIG on endometrial angiogenesis and the pregnancy outcomes. To explore the effects of LIG on low endometrial receptivity (LER) and angiogenesis, pregnancy rats were assigned into Control (saline treatment), LER (hydroxyurea-adrenaline treatment), LIG 20 mg/kg and LIG 40 mg/kg groups. Hematoxylin and eosin (H&E) staining was performed to evaluate endometrial morphology. Quantitative real-time PCR, immunofluorescence staining, western blot and immunohistochemistry staining were employed to assess the expression of endometrial receptivity factors and angiogenesis-related gene/protein, respectively. RNA sequencing was used to analyze the effects of LIG on LER caused by Kidney deficiency and blood stasis. We found that endometrial thickness and the implanted embryo number were substantially reduced in the hydroxyurea-adrenaline-treated pregnancy rats. At the same time, the gene and protein expressions of ERα, LIF, VEGFA and CD31 in the endometrium were markedly reduced, while the expressions of MUC1, E-cadherin were increased in the LER group. Administration of LIG raised the endometrial thickness and implanted embryos, as well as reversed the expressions of these factors. Collectively, our findings revealed that LIG could facilitate embryo implantation via recovery of the endometrium receptivity and promotion of endometrial angiogenesis.
Collapse
Affiliation(s)
- Dongjie He
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Yanli Song
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Huidongzi Xiao
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Shaoqi Shi
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Hongyan Song
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Tianwei Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Tingting Ni
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Wang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xingxing Ren
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China.
| | - Aiwu Wei
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Xu J, Li S, Wehbe A, Ji X, Yang Y, Yang Y, Qin L, Liu FY, Ding Y, Ren C. Abdominal Aortic Occlusion and the Inflammatory Effects in Heart and Brain. Mediators Inflamm 2023; 2023:2730841. [PMID: 38131062 PMCID: PMC10735730 DOI: 10.1155/2023/2730841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2023] Open
Abstract
Background Abdominal aortic occlusion (AAO) occurs frequently and causes ischemia/reperfusion (I/R) injury to distant organs. In this study, we aimed to investigate whether AAO induced I/R injury and subsequent damage in cardiac and neurologic tissue. We also aimed to investigate the how length of ischemic time in AAO influences reactive oxygen species (ROS) production and inflammatory marker levels in the heart, brain, and serum. Methods Sixty male C57BL/6 mice were used in this study. The mice were randomly divided into either sham group or AAO group. The AAO group was further subdivided into 1-4 hr groups of aortic occlusion times. The infrarenal abdominal aorta was clamped for 1-4 hr depending on the AAO group and was then reperfused for 24 hr after clamp removal. Serum, hippocampus, and left ventricle tissue samples were then subjected to biochemical and histopathological analyses. Results AAO-induced I/R injury had no effect on cell necrosis, cell apoptosis, or ROS production. However, serum and hippocampus levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) increased in AAO groups when compared to sham group. Superoxide dismutase and total antioxidant capacity decreased in the serum, hippocampus, and left ventricle. In the serum, AAO increased the level of inducible nitric oxide synthase (iNOS) and decreased the levels of anti-inflammatory factors (such as arginase-1), transforming growth factor- β1 (TGF-β1), interleukin 4 (IL-4), and interleukin 10 (IL-10). In the hippocampus, AAO increased the levels of tumor necrosis factor (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6), IL-4, and IL-6, and decreased the level of TGF-β1. In the left ventricle, AAO increased the level of iNOS and decreased the levels of TGF-β1, IL-4, and IL-10. Conclusions AAO did not induce cell necrosis or apoptosis in cardiac or neurologic tissue, but it can cause inflammation in the serum, brain, and heart.
Collapse
Affiliation(s)
- Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Yong Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Yu Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing 100029, China
| | - Linhui Qin
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Feng-Yong Liu
- Department of Interventional Radiology, Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing 100053, China
| |
Collapse
|
6
|
Li S, Chiu TY, Jin X, Cao D, Xu M, Zhu M, Zhou Q, Liu C, Zong Y, Wang S, Yu K, Zhang F, Bai M, Liu G, Liang Y, Zhang C, Simonsen HT, Zhao J, Liu B, Zhao S. Integrating genomic and multiomic data for Angelica sinensis provides insights into the evolution and biosynthesis of pharmaceutically bioactive compounds. Commun Biol 2023; 6:1198. [PMID: 38001348 PMCID: PMC10674023 DOI: 10.1038/s42003-023-05569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Angelica sinensis roots (Angelica roots) are rich in many bioactive compounds, including phthalides, coumarins, lignans, and terpenoids. However, the molecular bases for their biosynthesis are still poorly understood. Here, an improved chromosome-scale genome for A. sinensis var. Qinggui1 is reported, with a size of 2.16 Gb, contig N50 of 4.96 Mb and scaffold N50 of 198.27 Mb, covering 99.8% of the estimated genome. Additionally, by integrating genome sequencing, metabolomic profiling, and transcriptome analysis of normally growing and early-flowering Angelica roots that exhibit dramatically different metabolite profiles, the pathways and critical metabolic genes for the biosynthesis of these major bioactive components in Angelica roots have been deciphered. Multiomic analyses have also revealed the evolution and regulation of key metabolic genes for the biosynthesis of pharmaceutically bioactive components; in particular, TPSs for terpenoid volatiles, ACCs for malonyl CoA, PKSs for phthalide, and PTs for coumarin biosynthesis were expanded in the A. sinensis genome. These findings provide new insights into the biosynthesis of pharmaceutically important compounds in Angelica roots for exploration of synthetic biology and genetic improvement of herbal quality.
Collapse
Affiliation(s)
- Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Tsan-Yu Chiu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Meng Xu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Qi Zhou
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Chun Liu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Shujie Wang
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Kang Yu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Feng Zhang
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Mingzhou Bai
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- Department of Biotechnology and Biomedicine, The Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Guangrui Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Yunlong Liang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Chi Zhang
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, The Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
- Laboratory of Plant Biotechnology, Université Jean Monnet, 23 Rue du Dr Michelon, 42000, Saint-Etienne, France
| | - Jian Zhao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, Hunan, China.
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China.
| | - Shancen Zhao
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China.
- Beijing Life Science Academy, 102200, Beijing, China.
| |
Collapse
|
7
|
Liu Z, Zhang S, Ran Y, Geng H, Gao F, Tian G, Feng Z, Xi J, Ye L, Su W. Nanoarchitectonics of tannic acid based injectable hydrogel regulate the microglial phenotype to enhance neuroplasticity for poststroke rehabilitation. Biomater Res 2023; 27:108. [PMID: 37908012 PMCID: PMC10617113 DOI: 10.1186/s40824-023-00444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/08/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Stroke is the second leading cause of mortality and disability worldwide. Poststroke rehabilitation is still unsatisfactory in clinics, which brings great pain and economic burdens to stroke patients. In this study, an injectable hydrogel in which tannic acid (TA) acts as not only a building block but also a therapeutic drug, was developed for poststroke rehabilitation. METHODS TA is used as a building block to form an injectable hydrogel (TA gel) with carboxymethyl chitosan (CMCS) by multivalent hydrogen bonds. The morphology, rheological properties, and TA release behavior of the hydrogel were characterized. The abilities of the TA gel to modulate microglial (BV2 cells) polarization and subsequently enhance the neuroplasticity of neuro cells (N2a cells) were assessed in vitro. The TA gel was injected into the cavity of stroke mice to evaluate motor function recovery, microglial polarization, and neuroplasticity in vivo. The molecular pathway through which TA modulates microglial polarization was also explored both in vitro and in vivo. RESULTS The TA gel exhibited sustainable release behavior of TA. The TA gel can suppress the expression of CD16 and IL-1β, and upregulate the expression of CD206 and TGF-β in oxygen and glucose-deprived (OGD) BV2 cells, indicating the regulation of OGD BV2 cells to an anti-inflammatory phenotype in vitro. This finding further shows that the decrease in synaptophysin and PSD95 in OGD N2a cells is effectively recovered by anti-inflammatory BV2 cells. Furthermore, the TA gel decreased CD16/iNOS expression and increased CD206 expression in the peri-infarct area of stroke mice, implying anti-inflammatory polarization of microglia in vivo. The colocalization of PSD95 and Vglut1 stains, as well as Golgi staining, showed the enhancement of neuroplasticity by the TA gel. Spontaneously, the TA gel successfully recovered the motor function of stroke mice. The western blot results in vitro and in vivo suggested that the TA gel regulated microglial polarization via the NF-κB pathway. CONCLUSION The TA gel serves as an effective brain injectable implant to treat stroke and shows promising potential to promote poststroke rehabilitation in the clinic.
Collapse
Affiliation(s)
- Zongjian Liu
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Shulei Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyuan Ran
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital of Shandong University, Shandong University, Jinan, Shandong, 250012, China.
| | - Fuhai Gao
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Guiqin Tian
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianing Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, 100144, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Wei Su
- Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, China.
| |
Collapse
|
8
|
Shi W, Ren C, Zhang W, Gao C, Yu W, Ji X, Chang L. Hypoxic Postconditioning Promotes Angiogenesis After Ischemic Stroke. Neuroscience 2023; 526:35-47. [PMID: 37331689 DOI: 10.1016/j.neuroscience.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Although hypoxic postconditioning (HPC) has a protective effect on ischemic stroke, its effect on angiogenesis after ischemic stroke is still unclear. This study was designed to investigate the effects of HPC on angiogenesis after ischemic stroke and to preliminarily study the mechanism involved. Oxygen-glucose deprivation (OGD)-intervened bEnd.3 (mouse brain-derived Endothelial cell. 3) was used to simulate cerebral ischemia. Cell counting kit-8 (CCK-8), Cell BrdU proliferation, wound healing, Transwell and tube formation assays were used to evaluate the effect of HPC on the cell viability, proliferation, migration (horizontal and vertical migration), morphogenesis and tube formation of bEnd.3. A middle cerebral artery occlusion (MCAO) model was made in C57 mice to simulate focal cerebral ischemia. Rod rotation test, corner test, modified neurological severity score (mNSS), and balance beam walking test were used to evaluate the effect of HPC on the neurological impairment of mice. Immunofluorescence staining was used to evaluate the effect of HPC on angiogenesis in mice. The angiogenesis-related proteins were evaluated and quantified using western blot. Results showed that HPC significantly promoted proliferation, migration and tube formation of bEnd.3. HPC significantly reversed the neurological deficit of MCAO mice. Moreover, HPC significantly promoted angiogenesis in the peri-infarct area, and angiogenesis was found to be positively correlated with the improvement of neurological impairment. The HPC mice showed higher PLCλ and ALK5 than did MCAO. We conclude that HPC improves the neurological deficit caused by focal cerebral ischemia by promoting angiogenesis. Furthermore, the effect of HPC on improving angiogenesis may be related to PLCλ and ALK5.
Collapse
Affiliation(s)
- Wenjie Shi
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China; Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Wei Zhang
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wantong Yu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorder, Capital Medical University, Beijing 100053, China
| | - Lisha Chang
- North China University of Science and Technology Affiliated Hospital, Tangshan 063000, China.
| |
Collapse
|
9
|
Wang Q, Wehbe A, Wills M, Li F, Geng X, Ding Y. The Key Role of Initiation Timing on Stroke Rehabilitation by Remote Ischemic Conditioning with Exercise (RICE). Neurol Res 2023; 45:334-345. [PMID: 36399507 DOI: 10.1080/01616412.2022.2146259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Physical therapy is an integral part of post-stroke rehabilitation. Remote ischemic conditioning (RIC) induces neuroprotection within 24 hours after stroke, during which exercise is unsafe and ineffective. We combined RIC with exercise to establish a novel rehabilitation strategy, RICE (RIC+Exercise). The aim of this study was to optimize the RICE protocol in neurorehabilitation. METHODS Thirty-two adult male Sprague-Dawley rats were placed in one of four groups: stroke with no rehabilitation or stroke with various RICE protocols. To further understand the mechanisms underlying neurorehabilitation, sixteen adult male Sprague-Dawley were added, each placed in one of two groups: stroke with exerciseor RIC . Long-term functional outcomes were determined by beam balance, rota-rod, grid walk, forelimb placing, and Morris water maze tests up to 28 days after stroke (p < 0.05). Changes in neuroplasticity including synaptogenesis (assessed by measuring synaptophysin, post-synaptic density protein-95, and brain-derived neutrophic factor), angiogenesis (via vascular endothelial growth factor, Angiopoietin-1, and Angiopoietin-2), and regulatory molecules (including hypoxia inducible factor-1α, phospholipase D2 and the mechanistic target of rapamycin pathway), were all measured at both mRNA and protein levels (p < 0.05). RESULTS All rehabilitation groups showed significant improvement in functional outcomes and levels of synaptogenesis and angiogenesis. 5 day RICE groups, in which RIC was started five days prior to exercise, demonstrated the greatest improvement among these parameters. The results also suggested that the HIF-1α/PLD2/mTOR signaling pathway may be implicated in post-stroke neuroplasticity. CONCLUSIONS RICE, particularly RIC initiation at hour 6 post-reperfusion followed by exercise on day 5, enhanced post-stroke rehabilitation in rats.
Collapse
Affiliation(s)
- Qingzhu Wang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Social and Behavioral Sciences Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
10
|
Cheng Z, Ding Y, Rajah GB, Gao J, Li F, Ma L, Geng X. Vertebrobasilar artery cooling infusion in acute ischemic stroke for posterior circulation following thrombectomy: Rationale, design and protocol for a prospective randomized controlled trial. Front Neurosci 2023; 17:1149767. [PMID: 37113154 PMCID: PMC10126519 DOI: 10.3389/fnins.2023.1149767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Background Although endovascular mechanical thrombectomy demonstrates clinical efficacy in posterior circulation acute ischemic stroke (AIS), only one third of these patients attain functional independence with a third of patients' expiring despite vascular recanalization. Neuroprotection strategies, such as therapeutic hypothermia (TH) have been considered a promising adjunctive treatment in AIS. We propose the following rationale, design and protocol for a prospective randomized controlled trial (RCT) aimed to determine whether Vertebrobasilar Artery Cooling Infusion (VACI) improves functional outcomes in posterior circulation AIS patients post mechanical thrombectomy. Methods Subjects in the study will be assigned randomly to either the cooling infusion or the control group in a 1:1 ratio (n = 40). Patients allocated to the cooling infusion group will receive 300 ml cool saline at 4C through the catheter (30 ml/min) into vertebral artery after thrombectomy. The control group will receive the same volume of 37C saline. All patients enrolled will receive standard care according to current guidelines for stroke management. The primary outcome is symptomatic intracranial hemorrhage (ICH), whereas the secondary outcomes include functional outcome score, infarction volume, mortality, ICH, fatal ICH, cerebral vasospasm, coagulation abnormality, pneumonia and urinary infection. Discussions This study will determine the preliminary safety, feasibility, and neuroprotective benefits of VACI in posterior circulation AIS patients with reperfusion therapy. The results of this study may provide evidence for VACI as a new therapy in posterior circulation AIS. Clinical Trial Registration www.chictr.org.cn, ChiCTR2200065806, registered on November 15, 2022.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Yuchuan Ding,
| | - Gary B. Rajah
- Department of Neurosurgery, Munson Healthcare, Traverse City, MI, United States
| | - Jie Gao
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Fenghai Li
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Linlin Ma
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology and Stroke Intervention and Translational Center (SITC), Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
- Luhe Institute of Neuroscience, Capital Medical University, Beijing, China
- Xiaokun Geng,
| |
Collapse
|
11
|
Ligusticum chuanxiong promotes the angiogenesis of preovulatory follicles (F1-F3) in late-phase laying hens. Poult Sci 2022; 102:102430. [PMID: 36621100 PMCID: PMC9841292 DOI: 10.1016/j.psj.2022.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Ligusticum chuanxiong (CX) is a traditional Chinese medicine that is widely planted throughout the world. CX is one of the most important and commonly used drugs to enhance blood circulation. The preovulatory follicles in laying hens have a large number of blood arteries and meridians that feed the follicles' growth and maturation with nutrients, hormones, and cytokines. With the extension of laying time, preovulatory follicles angiogenesis decreased gradually. In this study, we studied the mechanism of CX on preovulatory follicles angiogenesis in late-phase laying hens. The results show that CX extract can increase the angiogenesis of preovulatory follicles (F1-F3) of late-phase laying hens. CX extract can promote vascular endothelial growth factor receptor 2 (VEGFR2) phosphorylation in preovulatory follicles theca layers, promote the proliferation, invasion and migration through PI3K/AKT and RAS/ERK signaling pathways in primary follicle microvascular endothelial-like cells (FMECs). In addition, CX extract can up-regulate the expression of hypoxia inducible factor α (HIF1α) in granulosa cells (GCs) and granulosa layers through PI3K/AKT and RAS/ERK signaling pathways, thereby promoting the secretion of vascular endothelial growth factor A (VEGFA). In conclusion, the current study confirmed the promoting effect of CX extract on the preovulatory follicles angiogenesis, which sets the stage for the design of functional animal feed for late-phase laying hens.
Collapse
|
12
|
Liu X, Xiao X, Han X, Yao L, Lan W. A New Therapeutic Trend: Natural Medicine for Ameliorating Ischemic Stroke via PI3K/Akt Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227963. [PMID: 36432062 PMCID: PMC9694461 DOI: 10.3390/molecules27227963] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Ischemic stroke (IS) is an acute cerebrovascular disease caused by sudden arterial occlusion, which is characterized by a high morbidity, mortality, and disability rate. It is one of the most important causes of nervous system morbidity and mortality in the world. In recent years, the search for new medicine for the treatment of IS has become an attractive research focus. Due to the extremely limited time window of traditional medicine treatment, some side effects may occur, and accompanied by the occurrence of adverse reactions, the frequency of exploration with natural medicine is significantly increased. Phosphatidylinositol-3-kinase/Protein kinase B (PI3K/Akt) signaling pathway is a classical pathway for cell metabolism, growth, apoptosis, and other physiological activities. There is considerable research on medicine that treats various diseases through this pathway. This review focuses on how natural medicines (including herbs and insects) regulate important pathophysiological processes such as inflammation, oxidative stress, apoptosis, and autophagy through the PI3K/Akt signaling pathway, and the role it plays in improving IS. We found that many kinds of herbal medicine and insect medicine can alleviate the damage caused by IS through the PI3K/Akt signaling pathway. Moreover, the prescription after their combination can also achieve certain results. Therefore, this review provides a new candidate category for medicine development in the treatment of IS.
Collapse
Affiliation(s)
- Xian Liu
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Xinyu Xiao
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610015, China
| | - Xue Han
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Lan Yao
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
- Correspondence:
| |
Collapse
|
13
|
Shao L, She Y, Yong S, Chen B, Yi J, Li Y, Guo Z, Wu Q. An evidence-based evaluation of Buyang Huanwu decoction for the treatment of the sequelae of stroke: A PRISMA-compliant systematic review and meta-analysis of randomized controlled trials. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154312. [PMID: 35810520 DOI: 10.1016/j.phymed.2022.154312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Buyang Huanwu decoction (BYHWD) is a famous traditional Chinese formula that has been widely prescribed for sequelae of stroke in China. However, the efficacy and safety of BYHWD in treating sequelae of stroke have never been systematically evaluated. PURPOSE To evaluate the effectiveness and safety of BYHWD in the treatment of sequelae of stroke. STUDY DESIGN A Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA)-compliant systematic review and meta-analysis of randomized clinical trials (RCTs). MATERIALS AND METHODS A systematic review and meta-analysis was performed in accordance with the PRISMA guidelines. Five common electronic databases were searched for relevant RCTs from their inception until May 20, 2022. The Cochrane risk-of-bias tool was used to evaluate the methodological quality and the risk of bias of the included RCTs. Review Manager 5.4 was used to analyse all the data obtained. The clinical effective rate (CER) was the primary outcome, and National Institutes of Health Stroke Scale (NIHSS) and Fugl-Meyer Assessment (FMA) scores were the secondary outcomes. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) system was used to evaluate the quality of evidence for each outcome. RESULTS Thirty-two clinical studies that recruited 2,527 eligible patients were included in this meta-analysis. The results of the meta-analysis suggested that compared with conventional treatment alone, the addition of BYHWD significantly improved the CER (RR = 1.24, 95% CI: 1.20-1.29, p < 0.00001), decreased the NIHSS score (MD = -5.42, 95% CI: -5.87-4.97, p < 0.00001), and increased the FMA score (MD = 17.28, 95% CI: 15.12-19.45, p < 0.00001). There were no reported adverse events in the included studies. Most results were robust, and the quality of evidence was moderate. CONCLUSION Our study is the first meta-analysis of RCTs evaluating the effects of BYHWD on sequelae of stroke. The addition of BYHWD to conventional treatment for sequelae of stroke significantly improved the CER and promoted neurological rehabilitation in patients, and there were no reported adverse events associated with this combination therapy. The findings of our study support the use of BYHWD as an adjunct treatment to conventional treatment in this clinical population. However, due to the limitations of the included clinical trials, high-quality clinical trials with longer follow-ups are needed to assess the long-term effectiveness and safety of BYHWD for treating the sequelae of stroke.
Collapse
Affiliation(s)
- Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Yan She
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Sunan Yong
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Bowei Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Jian Yi
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Ya Li
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China
| | - Zhihua Guo
- Hunan University of Chinese Medicine, Changsha, Hunan, PR China.
| | - Qibiao Wu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China; Zhuhai MUST Science and Technology Research Institute, Zhuhai, Guangdong, China..
| |
Collapse
|
14
|
Ligustilide Improves Cognitive Impairment via Regulating the SIRT1/IRE1α/XBP1s/CHOP Pathway in Vascular Dementia Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6664990. [PMID: 36017237 PMCID: PMC9398841 DOI: 10.1155/2022/6664990] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
Vascular dementia (VaD), the second cause of dementia, is caused by chronic cerebral hypoperfusion, producing progressive damage to cerebral cortex, hippocampus, and white matter. Ligustilide (LIG), one of the main active ingredients of Angelica sinensis, exerts the neuroprotective effect on neurodegenerative diseases. However, the mechanism remains unclear. An in vivo model of bilateral common carotid artery occlusion and in vitro model of oxygen glucose deprivation (OGD) were employed in this study. LIG (20 or 40 mg/kg/day) was intragastrically administered to the VaD rats for four weeks. The results of the Morris water maze test demonstrated that LIG effectively ameliorated learning and memory deficiency in VaD rats. LIG obviously relieved neuronal oxidative stress damage by increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) and decreasing the level of malondialdehyde (MDA) in VaD rats. Nissl staining showed that LIG increased the number of the Nissl body in VaD rats. After LIG administration, the apoptotic-related protein, Bax, was decreased and Bcl-2 was increased in the hippocampus of VaD rats. Moreover, the expressions of sirtuin 1 (SIRT1) and protein disulfide isomerase (PDI) were decreased, binding immunoglobulin protein (BIP) and phospho-inositol-requiring enzyme-1α (P-IRE1α), X-box binding protein 1 (XBP1s), and C/EBP-homologous protein (CHOP) were increased in VaD rats. After LIG treatment, these changes were reversed. The immunofluorescence results further showed that LIG upregulated the expression of SIRT1 and downregulated the expression of P-IRE1α in VaD rats. In addition, in vitro experiment showed that EX-527 (SIRT1 inhibitor) partly abolished the inhibitory effect of LIG on the IRE1α/XBP1s/CHOP pathway. In conclusion, these studies indicated that LIG could improve cognitive impairment by regulating the SIRT1/IRE1α/XBP1s/CHOP pathway in VaD rats.
Collapse
|
15
|
You J, Qian F, Huang Y, Guo Y, Lv Y, Yang Y, Lu X, Guo T, Wang J, Gu B. lncRNA WT1-AS attenuates hypoxia/ischemia-induced neuronal injury during cerebral ischemic stroke via miR-186-5p/XIAP axis. Open Med (Wars) 2022; 17:1338-1349. [PMID: 35959150 PMCID: PMC9319664 DOI: 10.1515/med-2022-0528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022] Open
Abstract
This study aimed to investigate the role and mechanism of long non-coding RNA (lncRNA) WT1 antisense RNA (WT1-AS) in cerebral ischemic stroke. The Starbase database and dual-luciferase reporter gene assay were used to analyze the interaction between lncRNA WT1 antisense RNA (lncRNA WT1-AS) and microRNA-186-5p (miR-186-5p). Reverse transcription-quantitative PCR analysis was performed to determine lncRNA WT1-AS and miR-186-5p levels. An oxygen glucose deprivation (OGD)-induced SH-SY5Y cell injury model was established. Cell viability and apoptosis were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and flow cytometric assays, respectively. Caspase 3 activity was evaluated using a caspase 3 activity detection kit. The results showed that miR-186-5p is a direct target of the lncRNA WT1-AS. In addition, lncRNA WT1-AS levels were downregulated and miR-186-5p levels were upregulated in the blood samples of patients with ischemic stroke and OGD-induced SH-SY5Y cells. WT1-AS overexpression promoted OGD-induced cell viability and reduced the cell apoptosis and caspase 3 activity. However, these effects were reversed by miR-186-5p overexpression. Furthermore, the results demonstrated that the X-linked inhibitor of apoptosis (XIAP) was directly targeted by miR-186-5p. Similarly, transfection with the miR-186-5p inhibitor reduced OGD-induced neuronal damage by upregulating XIAP expression. In conclusion, lncRNA WT1-AS attenuates hypoxia/ischemia-induced neuronal injury in cerebral ischemic stroke through the miR-186-5p/XIAP axis.
Collapse
Affiliation(s)
- Jianquan You
- Emergency Department, Taizhou People’s Hospital , Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| | - Fei Qian
- Emergency Department, Taizhou People’s Hospital , Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| | - Yu Huang
- Emergency Department, Taizhou People’s Hospital , Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| | - Yingxuan Guo
- Emergency Department, Taizhou People’s Hospital , Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| | - Yaqian Lv
- Emergency Department, Taizhou People’s Hospital , Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| | - Yuqi Yang
- Emergency Department, Taizhou People’s Hospital , Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| | - Xiupan Lu
- Emergency Department, Taizhou People’s Hospital , Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| | - Ting Guo
- Emergency Department, Taizhou People’s Hospital , Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| | - Jun Wang
- Emergency Department, Taizhou People’s Hospital , No. 366 Taihu Road, Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| | - Bin Gu
- Emergency Department, Taizhou People’s Hospital , No. 366 Taihu Road, Taizhou Pharmaceutical High-Tech Zone , Taizhou 225300 , Jiangsu Province , China
| |
Collapse
|
16
|
Mao Z, Tian L, Liu J, Wu Q, Wang N, Wang G, Wang Y, Seto S. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154111. [PMID: 35512628 DOI: 10.1016/j.phymed.2022.154111] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mitophagy plays a critical role in cerebral ischemia/reperfusion by timely removal of dysfunctional mitochondria. In mammals, PINK1/Parkin is the most classic pathway mediating mitophagy. And the activation of PINK1/Parkin mediated mitophagy exerts neuroprotective effects during cerebral ischemia reperfusion injury (CIRI). Ligustilide (LIG) is a natural compound extracted from ligusticum chuanxiong hort and angelica sinensis (Oliv.) diels that exerts neuroprotective activity after cerebral ischemia reperfusion injury (CIRI). However, it still remains unclear whether LIG could attenuates cerebral ischemia reperfusion injury (CIRI) through regulating mitophagy mediated by PINK1/Parkin. PURPOSE To explore the underlying mechanism of LIG on PINK1/Parkin mediated mitophagy in the hippocampus induced by ischemia reperfusion. METHODS This research used the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model and oxygen-glucose deprivation and reperfusion (OGD/R) as in vitro model. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of LIG in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP) and activities of Na+-K+-ATPase were detected to reflect mitochondrial function. Moreover, transmission electron microscope (TEM) and fluorescence microscope were used to observe mitophagy and the western blot was performed to explore the changes in protein expression in PINK1/Parkin mediated mitophagy. Finally, exact mechanism between neuroprotection of LIG and mitophagy mediated by PINK1/Parkin was explored by cell transfection. RESULTS The results show that LIG improved mitochondrial functions by mitophagy enhancement in vivo and vitro to alleviate CIRI. Whereas, mitophagy enhanced by LIG under CIRI is abolished by PINK1 deficiency and midivi-1, a mitochondrial division inhibitor which has been reported to have the function of mitophagy, which could further aggravate the ischemia-induced brain damage, mitochondrial dysfunction and neuronal injury. CONCLUSION LIG could ameliorate the neuronal injury against ischemia stroke by promoting mitophagy via PINK1/Parkin. Targeting PINK1/Parkin mediated mitophagy with LIG treatment might be a promising therapeutic strategy for ischemia stroke.
Collapse
Affiliation(s)
- Zhiguo Mao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liyu Tian
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiao Liu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qian Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China.
| | - Guangyun Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012, China
| | - Yang Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
17
|
Zahran EM, Sayed AM, Alaaeldin R, Elrehany MA, Khattab AR, Abdelmohsen UR. Bioactives and functional food ingredients with promising potential for the management of cerebral and myocardial ischemia: a comprehensive mechanistic review. Food Funct 2022; 13:6859-6874. [PMID: 35698869 DOI: 10.1039/d2fo00834c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischemia is a deadly disease featured by restricted perfusion to different organs in the body. An increase in the accumulation of reactive oxygen species and cell debris is the driving force for inducing many oxidative, inflammatory and apoptotic signaling pathways. However, the number of therapeutics existing for ischemic stroke patients is limited and there is insufficient data on their efficiency, which warrants the search for novel therapeutic candidates from natural sources. Herein, a comprehensive survey was done on the reported functional food bioactives (ca. 152 compounds) to manage or protect against health consequences of myocardial and cerebral ischemia. Furthermore, we reviewed the reported mechanistic studies for their anti-ischemic potential. Subsequently, network pharmacology- and in silico-based studies were conducted using the reported myocardial and cerebral ischemia-relevant molecular targets to study their complex interactions and highlight key targets in disease pathogenesis. Subsequently, the most prominent 20 compounds in the literature were used in a comprehensive in silico-based analysis (inverse docking, ΔG calculation and molecular dynamics simulation) to determine other potential targets for these compounds and their probable interactions with different signaling pathways relevant to this disease. Many functional food bioactives, belonging to different chemical classes, i.e., flavonoids, saponins, phenolics, alkaloids, iridoids and carotenoids, were proven to exhibit multifactorial effects in targeting the complex pathophysiology of ischemic conditions. These merits make them valuable therapeutic agents that can outperform the conventional drugs, and hence they can be utilized as add-ons to the conventional therapy for the management of different ischemic conditions; however, their rigorous clinical assessment is necessary.
Collapse
Affiliation(s)
- Eman Maher Zahran
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Rania Alaaeldin
- Department of Biochemistry, Faculty of pharmacy, Deraya University, University Zone, 61111 New Minia City, Egypt
| | - Mahmoud A Elrehany
- Department of Biochemistry, Faculty of pharmacy, Deraya University, University Zone, 61111 New Minia City, Egypt
| | - Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt. .,Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
18
|
Peng D, Qiao HZ, Tan HY, Wang YX, Luo D, Qiao LJ, Cai YF, Zhang SJ, Wang Q, Guan L. Ligustilide ameliorates cognitive impairment via AMPK/SIRT1 pathway in vascular dementia rat. Metab Brain Dis 2022; 37:1401-1414. [PMID: 35420377 DOI: 10.1007/s11011-022-00947-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Vascular dementia (VaD) is the second cause of dementia after Alzheimer's disease. Ligustilide (LIG) is one of the main active ingredients of traditional Chinese medicines, such as Angelica. Studies have reported that LIG could protect against VaD. However, the mechanism is still confused. In this study, we employed a bilateral common carotid artery occlusion rat model to study. LIG (20 or 40 mg/kg/day) and Nimodipine (20 mg/kg) were orally administered to the VaD rats for four weeks. Morris water maze test showed that LIG effectively ameliorated learning and memory impairment in VaD rats. LIG obviously reduced neuronal oxidative stress damage and the level of homocysteine in the brain of VaD rats. Western blot results showed that pro-apoptotic protein Bax and cleaved caspase 3 increased and anti-apoptotic protein Bcl-2 decreased in the hippocampi of VaD rats. But after LIG treatment, these changes were reversed. Moreover, Nissl staining result showed that LIG could reduce neuronal degeneration in VaD rats. Furthermore, LIG enhanced the expressions of P-AMPK and Sirtuin1(SIRT1) in VaD rats. In conclusion, these studies indicated that LIG could ameliorate cognitive impairment in VaD rats, which might be related to AMPK/SIRT1 pathway activation.
Collapse
Affiliation(s)
- Dong Peng
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han-Zi Qiao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Yu Tan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Xue Wang
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shi-Jie Zhang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Li Guan
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
19
|
Ginkgolide B Targets and Inhibits Creatine Kinase B to Regulate the CCT/TRiC-SK1 Axis and Exerts Pro-Angiogenic Activity in Middle Cerebral Artery Occlusion Mice. Pharmacol Res 2022; 180:106240. [PMID: 35513225 DOI: 10.1016/j.phrs.2022.106240] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
Promoting angiogenesis in the ischemic penumbra is a well-established method of ischemic stroke treatment. Ginkgolide B (GB) has long been recognized for its neuroprotective properties following stroke. As previously reported, it appears that stroke-induced neurogenesis and angiogenesis interact or are dependent on one another. Although the pharmacodynamic effect of GB on cerebral blood flow (CBF) following ischemic stroke has been reported, the molecular mechanism underlying this effect remains unknown. As such, this study sought to elucidate the pharmacodynamic effects and underlying mechanisms of GB on post-stroke angiogenesis. To begin, GB significantly increased the proliferation, migration, and tube formation capacity of mouse cerebral hemangioendothelioma cells (b.End3) and human umbilical vein endothelial cells (HUVEC). Additionally, GB significantly improved angiogenesis after oxygen-glucose deprivation/reperfusion (OGD/R) in endothelial cells. The dynamics of CBF, brain microvascular neovascularization and reconstruction, and brain endothelial tissue integrity were examined in middle cerebral artery occlusion (MCAO) mice following GB administration. Through label-free target detection techniques, we discovered for the first time that GB can specifically target Creatine Kinase B (CKB) and inhibit its enzymatic activity. Additionally, we demonstrated through network pharmacology and a series of molecular biology experiments that GB inhibited CKB and then promoted angiogenesis via the CCT/TRiC-SK1 axis. These findings shed new light on novel therapeutic strategies for neurological recovery and endothelial repair following ischemic stroke using GB therapy.
Collapse
|
20
|
Zhang M, Geng T, Jing SH, Li L, Wang K, Zhang Q, Zhang Y, Zhou SK, Gao P, Ding AW, Zhang L. Chemical profile and miscarriage prevention evaluation of Jiao-ai decoction, a classical traditional Chinese formula. J Pharm Biomed Anal 2022; 217:114832. [DOI: 10.1016/j.jpba.2022.114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
|
21
|
Gallego I, Villate-Beitia I, Saenz-Del-Burgo L, Puras G, Pedraz JL. Therapeutic Opportunities and Delivery Strategies for Brain Revascularization in Stroke, Neurodegeneration, and Aging. Pharmacol Rev 2022; 74:439-461. [PMID: 35302047 DOI: 10.1124/pharmrev.121.000418] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) diseases, especially acute ischemic events and neurodegenerative disorders, constitute a public health problem with no effective treatments to allow a persistent solution. Failed therapies targeting neuronal recovery have revealed the multifactorial and intricate pathophysiology underlying such CNS disorders as ischemic stroke, Alzheimeŕs disease, amyotrophic lateral sclerosis, vascular Parkisonism, vascular dementia, and aging, in which cerebral microvasculature impairment seems to play a key role. In fact, a reduction in vessel density and cerebral blood flow occurs in these scenarios, contributing to neuronal dysfunction and leading to loss of cognitive function. In this review, we provide an overview of healthy brain microvasculature structure and function in health and the effect of the aforementioned cerebral CNS diseases. We discuss the emerging new therapeutic opportunities, and their delivery approaches, aimed at recovering brain vascularization in this context. SIGNIFICANCE STATEMENT: The lack of effective treatments, mainly focused on neuron recovery, has prompted the search of other therapies to treat cerebral central nervous system diseases. The disruption and degeneration of cerebral microvasculature has been evidenced in neurodegenerative diseases, stroke, and aging, constituting a potential target for restoring vascularization, neuronal functioning, and cognitive capacities by the development of therapeutic pro-angiogenic strategies.
Collapse
Affiliation(s)
- Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Laura Saenz-Del-Burgo
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| |
Collapse
|
22
|
Sun L. F-box and WD repeat domain-containing 7 (FBXW7) mediates the hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway to affect hypoxic-ischemic brain damage in neonatal rats. Bioengineered 2021; 13:560-572. [PMID: 34951343 PMCID: PMC8805906 DOI: 10.1080/21655979.2021.2011635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to determine whether F-box and WD repeat domain-containing 7 (FBXW7) can mediate the hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway to affect neonatal hypoxic-ischemic brain damage (HIBD) in neonatal rats. HIBD rats were treated with LV-shFBXW7. Cerebral infarct size was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining, while microvessel density (MVD) was evaluated by immunohistochemistry. Learning and memory were tested using the Morris water maze (MWM) test. FBXW7 and HIF-1α/VEGF signaling pathway proteins were measured by Western blotting. Brain microvascular endothelial cells (BMECs) were isolated to establish an oxygen-glucose deprivation (OGD) model to evaluate treatment with FBXW7 siRNA. Cell viability was detected using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, while cell migration was evaluated using a wound healing assay. The tube formation of BMECs was also assessed. The results demonstrated that HIBD rats exhibited increased protein expression of FBXW7, HIF-1α, and VEGF. HIBD rats also displayed increased cerebral infarct size, prolonged escape latency and a decreased number of platform crossings. However, HIBD rats treated with LV-shFBXW7 exhibited reversal of these changes. In vitro experiments showed that BMECs in the OGD group had significantly decreased cell viability, shorter vascular lumen length, and shorter migration distance than cells in the control group. Moreover, silencing FBXW7 promoted proliferation, tube formation and migration of BMECs. Taken together, silencing FBXW7 upregulates the HIF-1α/VEGF signaling pathway to promote the angiogenesis of neonatal HIBD rats after brain injury, reducing infarct volume and improving recovery of nerve function in HIBD rats.
Collapse
Affiliation(s)
- Ling Sun
- Neonatal Intensive Care Unit, Yantaishan Hospital, Yantai, China
| |
Collapse
|
23
|
Phenothiazine Inhibits Neuroinflammation and Inflammasome Activation Independent of Hypothermia After Ischemic Stroke. Mol Neurobiol 2021; 58:6136-6152. [PMID: 34455546 DOI: 10.1007/s12035-021-02542-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
A depressive or hibernation-like effect of chlorpromazine and promethazine (C + P) on brain activity was reported to induce neuroprotection, with or without induced-hypothermia. However, the underlying mechanisms remain unclear. The current study evaluated the pharmacological function of C + P on the inhibition of neuroinflammatory response and inflammasome activation after ischemia/reperfusion. A total of 72 adult male Sprague-Dawley rats were subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 6 or 24 h reperfusion. At the onset of reperfusion, rats received C + P (8 mg/kg) with temperature control. Brain cell death was detected by measuring CD68 and myeloperoxidase (MPO) levels. Inflammasome activation was measured by mRNA levels of NLRP3, IL-1β, and TXNIP, and protein quantities of NLRP3, IL-1β, TXNIP, cleaved-Caspase-1, and IL-18. Activation of JAK2/STAT3 pathway was detected by the phosphorylation of STAT3 (p-STAT3) and JAK2 (p-JAK2), and the co-localization of p-STAT3 and NLRP3. Activation of the p38 pathway was assessed with the protein levels of p-p38/p38. The mRNA and protein levels of HIF-1α, FoxO1, and p-FoxO1, and the co-localization of p-STAT3 with HIF-1α or FoxO1 were quantitated. As expected, C + P significantly reduced cell death and attenuated the neuroinflammatory response as determined by reduced CD68 and MPO. C + P decreased ischemia-induced inflammasome activation, shown by reduced mRNA and protein expressions of NLRP3, IL-1β, TXNIP, cleaved-Caspase-1, and IL-18. Phosphorylation of JAK2/STAT3 and p38 pathways and the co-localization of p-STAT3 with NLRP3 were also inhibited by C + P. Furthermore, mRNA levels of HIF-1α and FoxO1 were decreased in the C + P group. While C + P inhibited HIF-1α protein expression, it increased FoxO1 phosphorylation, which promoted the exclusion of FoxO1 from the nucleus and inhibited FoxO1 activity. At the same time, C + P reduced the co-localization of p-STAT3 with HIF-1α or FoxO1. In conclusion, C + P treatment conferred neuroprotection in stroke by suppressing neuroinflammation and NLRP3 inflammasome activation. The present study suggests that JAK2/STAT3/p38/HIF-1α/FoxO1 are vital regulators and potential targets for efficacious therapy following ischemic stroke.
Collapse
|
24
|
Zhang K, Fang KL, Wang T, Xu LT, Zhao Y, Wang XN, Xiang L, Shen T. Chemical Constituents from the Rhizome of Ligusticum chuanxiong Hort. and Their Nrf2 Inducing Activity. Chem Biodivers 2021; 18:e2100302. [PMID: 34436820 DOI: 10.1002/cbdv.202100302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
The rhizome of Ligusticum chuanxiong Hort. has been widely used for the therapy of diabetic nephropathy (DN) in traditional Chinese medicine (TCM). The nuclear transcription factor erythroid 2-related factor (Nrf2) is a potential target for treating DN. The purpose of this research was to study the chemical constituents from the rhizome of L. chuanxiong, evaluate their Nrf2 inducing activity, and find the molecules with potential therapeutic effect against DN. In this study, two new phthalides (1-2) along with twenty-seven known constituents were obtained from the rhizome of L. chuanxiong. Their structures were elucidated through various spectroscopic methods. Twelve constituents, including eight phthalides (2, 5, 6,10-13, 14) and four other compounds (17, 18, 20,28), stimulated NAD(P)H: quinone reductase (QR) activity, suggesting that these bioactive constituents were potential Nrf2 activators. Among the isolated compounds, phthalide levistolide A (LA, 14) upregulated the protein levels of Nrf2, NQO1, and γ-GCS in a dose-dependent manner. Our results implied that the clinical application of the rhizome of L. chuanxiong as an anti-DN drug in TCM might be attributed to the Nrf2 inducing effect of phthalides. Thus, phthalides is a group of promising leading molecules for discovering anti-DN agents.
Collapse
Affiliation(s)
- Kan Zhang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, P. R. China
| | - Kai-Li Fang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, P. R. China
| | - Tian Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, P. R. China
| | - Lin-Tao Xu
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, P. R. China
| | - Yu Zhao
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, P. R. China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, P. R. China
| | - Lan Xiang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, P. R. China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, P. R. China
| |
Collapse
|
25
|
Pan Z, Ma G, Kong L, Du G. Hypoxia-inducible factor-1: Regulatory mechanisms and drug development in stroke. Pharmacol Res 2021; 170:105742. [PMID: 34182129 DOI: 10.1016/j.phrs.2021.105742] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Stroke is an acute cerebrovascular disease caused by sudden rupture of blood vessels in the brain or blockage of blood vessels, which has now become one of the main causes of adult death. During stroke, hypoxia-inducible factor-1 (HIF-1), as an important regulator under hypoxia conditions, is involved in the pathological process of stroke by regulating multi-pathways, such as glucose metabolism, angiogenesis, erythropoiesis, cell survival. However, the roles of HIF-1 in stroke are still controversial, which are related with ischemic time and degree of ischemia. The regulatory mechanisms of HIF-1 in stroke include inflammation, autophagy, oxidative stress, apoptosis and energy metabolism. The potential drugs targeting HIF-1 have attracted more attention, such as HIF-1 inhibitors, HIF-1 stabilizers and natural products. Based on the role of HIF-1 in stroke, HIF-1 is expected to be a potential target for stroke treatment. Resolving when and what interventions for HIF-1 to take during stroke will provide novel strategies for stroke treatment.
Collapse
Affiliation(s)
- Zirong Pan
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Guodong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Linglei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Guanhua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
26
|
Hu C, Li C, Ma Q, Wang R, He Y, Wang H, Luo G. Inhibition of Long Noncoding RNA SNHG15 Ameliorates Hypoxia/Ischemia-Induced Neuronal Damage by Regulating miR-302a-3p/STAT1/NF-κB Axis. Yonsei Med J 2021; 62:325-337. [PMID: 33779086 PMCID: PMC8007436 DOI: 10.3349/ymj.2021.62.4.325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/02/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Ischemic brain injury results in high mortality and serious neurologic morbidity. Here, we explored the role of SNHG15 in modulating neuronal damage and microglial inflammation after ischemia stroke. MATERIALS AND METHODS The hypoxia/ischemia models were induced by middle cerebral artery occlusion in mice and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Quantitative real-time PCR (qRT-PCR) and Western blot were conducted to determine the levels of SNHG15, miR-302a-3p, and STAT1/NF-κB. Moreover, gain- or loss-of functional assays of SNHG15 and miR-302a-3p were conducted. MTT assay was used to evaluate the viability of HT22 cells, and the apoptotic level was determined by flow cytometry. Furthermore, enzyme-linked immunosorbent assay was performed to detect oxidative stress and inflammatory mediators in the ischemia cortex and OGD/R-treated BV2 microglia. RESULTS The SNHG15 and STAT1/NF-κB pathways were both distinctly up-regulated, while miR-302a-3p was notably down-regulated in the ischemia cortex. Additionally, overexpressing SNHG15 dramatically enhanced OGD/R-mediated neuronal apoptosis as well as the expression of oxidative stress and inflammation factors from microglia. In contrast, knocking down SNHG15 or overexpressing miR-302a-3p relieved OGD/R-mediated neuronal apoptosis and microglial activation. Moreover, the rescue experiment testified that overexpressing miR-302a-3p also attenuated SNHG15 up-regulation-induced effects. In terms of the mechanisms, SNHG15 sponged miR-302a-3p and activated STAT1/NF-κB as a competitive endogenous RNA, while miR-302a-3p targeted STAT1 and negatively regulated the STAT1/NF-κB pathway. CONCLUSION SNHG15 was up-regulated in the hypoxia/ischemia mouse or cell model. The inhibition of SNHG15 ameliorates ischemia/hypoxia-induced neuronal damage and microglial inflammation by regulating the miR-302a-3p/STAT1/NF-κB pathway.
Collapse
Affiliation(s)
- Chunting Hu
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chen Li
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaoya Ma
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruili Wang
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya He
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Wang
- Department of Geriatrics Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guogang Luo
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
27
|
Wang Q, Wills M, Han Z, Geng X, Ding Y. Mini Review (Part I): An Experimental Concept on Exercise and Ischemic Conditioning in Stroke Rehabilitation. Brain Circ 2021; 6:242-247. [PMID: 33506146 PMCID: PMC7821806 DOI: 10.4103/bc.bc_63_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022] Open
Abstract
Stroke remains a leading cause of adult death and disability. Poststroke rehabilitation is vital for reducing the long-term sequelae of brain ischemia. Recently, physical exercise training has been well established as an effective rehabilitation tool, but its efficacy depends on exercise parameters and the patient's capacities, which are often altered following a major cerebrovascular event. Thus, ischemic conditioning as a rehabilitation intervention was considered an “exercise equivalent,” but the investigation is still in its relative infancy. In this mini-review, we discuss the potential for physical exercise or ischemic conditioning and its relation to angiogenesis, neurogenesis, and plasticity in stroke rehabilitation. This allows the readers to understand the context of the research and the application of ischemic conditioning in poststroke rehabilitation.
Collapse
Affiliation(s)
- Qingzhu Wang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zhenzhen Han
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Research and Development Center, John D. Dingell VA Medical Center, Detroit, Michigan, USA
| |
Collapse
|