1
|
Popović A, Drljača Lero J, Miljković D, Popović M, Marinović J, Ljubković M, Andjelković Z, Čapo I. Karnozin EXTRA® causes changes in mitochondrial bioenergetics response in MCF-7 and MRC-5 cell lines. Biotech Histochem 2025; 100:50-62. [PMID: 39812443 DOI: 10.1080/10520295.2024.2448490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Numerous studies reported about potential effects of L-carnosine in regulation of tumor growth and metabolism. We evaluated the effects of different concentrations of L-carnosine from Karnozin EXTRA® supplement on mitochondrial respiratory chain complexes of human embryo lung fibroblasts (MRC-5) and human breast cancer cells (MCF-7), with different energy pathways. Also, we analyzed the proliferation index and expression of various markers of oxidative stress. Treatment with Karnozin EXTRA® (concentration of L-carnosine were 2, 5 and 10 mM) for 24 hours gradually decreased the number of cells and changed their morphological features. In both cell lines, a dose-dependent reduction of cell viability was recorded compared to the control group. Also, experimental groups showed a concentration-dependent decrease in fluorescence intensity of SOD2 expressions in MCF-7, while in MRC-5 we noticed higher fluorescence intensity in Carnosine 2 mM group. Treated cells, in both cell lines, showed different intensity of iNOS cytoplasmic immunopositivity in a concentration-dependent manner. In all experimental groups, we noticed an increased expression of marker of oxidative stress-cytochrome P450 2E1 (CYP2E1). The effects of Karnozin EXTRA® capsule on mitochondrial respiration, assessed with the Clark-type electrode, were manifested as a reduction of: basal cell respiration, maximum capacity of electron transport chain and mitochondrial ATP-linked respiration. Also, significant decrease in the activity of complex I (NADH-ubiquinone oxidoreductase), complex II (succinate dehydrogenase) and complex IV (cytochrome c oxidase) was observed in both cell lines. Bearing in mind that Karnozin EXTRA® is a potential regulator of energy metabolism of MCF-7 and MRC-5, these results provide a good basis for further preclinical and clinical research.
Collapse
Affiliation(s)
- Aleksandra Popović
- Faculty of Medicine Novi Sad, Department of Physiology, University of Novi Sad, Novi Sad, Serbia
| | - Jovana Drljača Lero
- Faculty of Medicine Novi Sad, Department of Pharmacy, University of Novi Sad, Novi Sad, Serbia
| | - Dejan Miljković
- Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia
| | - Milan Popović
- Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia
| | - Jasna Marinović
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Marko Ljubković
- Department of Physiology, University of Split School of Medicine, Split, Croatia
| | - Zlatibor Andjelković
- Institute of Histology and Embryology, Faculty of Medicine, University of Priština/Kosovska Mitrovica, Serbia
| | - Ivan Čapo
- Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
2
|
Caruso G, Di Pietro L, Cardaci V, Maugeri S, Caraci F. The therapeutic potential of carnosine: Focus on cellular and molecular mechanisms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023. [DOI: 10.1016/j.crphar.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
3
|
Busa P, Lee SO, Huang N, Kuthati Y, Wong CS. Carnosine Alleviates Knee Osteoarthritis and Promotes Synoviocyte Protection via Activating the Nrf2/HO-1 Signaling Pathway: An In-Vivo and In-Vitro Study. Antioxidants (Basel) 2022; 11:antiox11061209. [PMID: 35740105 PMCID: PMC9220310 DOI: 10.3390/antiox11061209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
The most common joint disease in the elderly is knee osteoarthritis (OA). It is distinguished by cartilage degradation, subchondral bone loss, and a decrease in joint space. We studied the effects of carnosine (CA) on knee OA in male Wistar rats. OA is induced by anterior cruciate ligament transection combined with medial meniscectomy (ACLT+MMx) method and in vitro studies are conducted in fibroblast-like synoviocyte cells (FLS). The pain was assessed using weight-bearing and paw-withdrawal tests. CA supplementation significantly reduced pain. The enzyme-linked immunosorbent assay (ELISA) method was used to detect inflammatory proteins in the blood and intra-articular synovial fluid (IASF), and CA reduced the levels of inflammatory proteins. Histopathological studies were performed on knee-tissue samples using toluidine blue and hematoxylin and eosin (H and E) assays. CA treatment improved synovial protection and decreased cartilage degradation while decreasing zonal depth lesions. Furthermore, Western blotting studies revealed that the CA-treated group activated nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase (HO-1) and reduced the expression of cyclooxygenase-2 (COX-2). FLS cells were isolated from the knee joints and treated with IL-1β to stimulate the inflammatory response and increase reactive oxygen species (ROS). The matrix metalloproteinase protein (MMP's) levels (MMP-3, and MMP-13) were determined using the reverse transcription-polymerase chain reaction (RT-PCR), and CA treatment reduced the MMP's expression levels. When tested using the 2',7'-dicholorodihydrofluroscene diacetate (DCFDA) assay and the 5,5',6,6'-tetracholoro-1,1',3,3'-tertraethylbenzimidazolcarboc janine iodide (JC-1) assay in augmented ROS FLS cells, CA reduced the ROS levels and improved the mitochondrial membrane permeability. This study's investigation suggests that CA significantly alleviates knee OA both in vitro and in vivo.
Collapse
Affiliation(s)
- Prabhakar Busa
- Department of Anesthesiology, Cathay General Hospital, Taipei City 106, Taiwan; (P.B.); (S.-O.L.); (Y.K.)
| | - Sing-Ong Lee
- Department of Anesthesiology, Cathay General Hospital, Taipei City 106, Taiwan; (P.B.); (S.-O.L.); (Y.K.)
| | - Niancih Huang
- Department of Anesthesiology, Tri-Service General Hospital, Taipei City 114, Taiwan;
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei City 114, Taiwan
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathay General Hospital, Taipei City 106, Taiwan; (P.B.); (S.-O.L.); (Y.K.)
| | - Chih-Shung Wong
- Department of Anesthesiology, Cathay General Hospital, Taipei City 106, Taiwan; (P.B.); (S.-O.L.); (Y.K.)
- Department of Anesthesiology, Tri-Service General Hospital, Taipei City 114, Taiwan;
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei City 114, Taiwan
- Correspondence: ; Tel.: +886-2-2708-2121
| |
Collapse
|
4
|
Erythrocytes Prevent Degradation of Carnosine by Human Serum Carnosinase. Int J Mol Sci 2021; 22:ijms222312802. [PMID: 34884603 PMCID: PMC8657436 DOI: 10.3390/ijms222312802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
The naturally occurring dipeptide carnosine (β-alanyl-l-histidine) has beneficial effects in different diseases. It is also frequently used as a food supplement to improve exercise performance and because of its anti-aging effects. Nevertheless, after oral ingestion, the dipeptide is not detectable in human serum because of rapid degradation by serum carnosinase. At the same time, intact carnosine is excreted in urine up to five hours after intake. Therefore, an unknown compartment protecting the dipeptide from degradation has long been hypothesized. Considering that erythrocytes may constitute this compartment, we investigated the uptake and intracellular amounts of carnosine in human erythrocytes cultivated in the presence of the dipeptide and human serum using liquid chromatography–mass spectrometry. In addition, we studied carnosine’s effect on ATP production in red blood cells and on their response to oxidative stress. Our experiments revealed uptake of carnosine into erythrocytes and protection from carnosinase degradation. In addition, no negative effect on ATP production or defense against oxidative stress was observed. In conclusion, our results for the first time demonstrate that erythrocytes can take up carnosine, and, most importantly, thereby prevent its degradation by human serum carnosinase.
Collapse
|
5
|
Activation of Nm23-H1 to suppress breast cancer metastasis via redox regulation. Exp Mol Med 2021; 53:346-357. [PMID: 33753879 PMCID: PMC8080780 DOI: 10.1038/s12276-021-00575-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Non-metastatic protein 23 H1 (Nm23-H1), a housekeeping enzyme, is a nucleoside diphosphate kinase-A (NDPK-A). It was the first identified metastasis suppressor protein. Nm23-H1 prolongs disease-free survival and is associated with a good prognosis in breast cancer patients. However, the molecular mechanisms underlying the role of Nm23-H1 in biological processes are still not well understood. This is a review of recent studies focusing on controlling NDPK activity based on the redox regulation of Nm23-H1, structural, and functional changes associated with the oxidation of cysteine residues, and the relationship between NDPK activity and cancer metastasis. Further understanding of the redox regulation of the NDPK function will likely provide a new perspective for developing new strategies for the activation of NDPK-A in suppressing cancer metastasis.
Collapse
|
6
|
Banerjee S, Poddar MK. Carnosine research in relation to aging brain and neurodegeneration: A blessing for geriatrics and their neuronal disorders. Arch Gerontol Geriatr 2020; 91:104239. [PMID: 32866926 DOI: 10.1016/j.archger.2020.104239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/29/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
Carnosine, an endogenous dipeptide (β-Ala-l-His), is enriched in prefrontal cortex and olfactory bulb of the brain, blood and also in muscle. It has mainly antioxidant and antiglycating properties which makes this molecule unique. Its content reduces during aging and aging-induced neurodegenerative diseases. Aging is a progressive biological process that leads to develop the risk factors of diseases and death. During aging the morphological, biochemical, cellular and molecular changes occur in brain and blood including other tissues. The objective of this review is to combine the updated information from the existing literature about the aging-induced neurodegeneration and carnosine research to meet the lacuna of mechanism of carnosine. The grey matter and white matter loses its normal ratio in aging, and hence the brain volume and weight. Different aging related neurodegenerative disorders arise due to loss of neurons, and synapses as a result of proteinopathies in some cases. Carnosine, being an endogenous biomolecule and having antioxidant, antiglycating properties has shown its potency to counteract erroneous protein biosynthesis, stress, activated microglial and astrocyte activity, and different neurodegenerative disorders. It (carnosine) can also inhibit the metal ion-induced degeneration by acting as a metal chelator. In this review the trends in carnosine research in relation to aging brain and neurodegeneration have been discussed with a view to its (carnosine) eligibility (including its mechanism of action) to be used as a promising neurotherapeutic for the betterment of elderly populations of our society at the national and international levels in near future.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India
| | - Mrinal K Poddar
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata, 700019, India.
| |
Collapse
|
7
|
Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, Przybyłowska M. Therapeutic Potential of Carnosine and Its Derivatives in the Treatment of Human Diseases. Chem Res Toxicol 2020; 33:1561-1578. [PMID: 32202758 DOI: 10.1021/acs.chemrestox.0c00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant progress in the pathogenesis, diagnosis, treatment, and prevention of cancer and neurodegenerative diseases, their occurrence and mortality are still high around the world. The resistance of cancer cells to the drugs remains a significant problem in oncology today, while in the case of neuro-degenerative diseases, therapies reversing the process are still yet to be found. Furthermore, it is important to seek new chemotherapeutics reversing side effects of currently used drugs or helping them perform their function to inhibit progression of the disease. Carnosine, a dipeptide constisting of β-alanine and l-histidine, has a variety of functions to mention: antioxidant, antiglycation, and reducing the toxicity of metal ions. It has therefore been proposed to act as a therapeutic agent for many pathological states. The aim of this paper was to find if carnosine and its derivatives can be helpful in treating various diseases. Literature search presented in this review includes review and original papers found in SciFinder, PubMed, and Google Scholar. Searches were based on substantial keywords concerning therapeutic usage of carnosine and its derivatives in several diseases including neurodegenerative disorders and cancer. In this paper, we review articles and find that carnosine and its derivatives are potential therapeutic agents in many diseases including cancer, neurodegenerative diseases, diabetes, and schizophrenia. Carnosine and its derivatives can be used in treating neurodegenerative diseases, cancer, diabetes, or schizophrenia, although their usage is limited. Therefore, there's an urge to synthesize and analyze new substances, overcoming the limitation of carnosine itself.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Iwona Inkielewicz-Stępniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
8
|
Hsieh SL, Hsieh S, Lai PY, Wang JJ, Li CC, Wu CC. Carnosine Suppresses Human Colorectal Cell Migration and Intravasation by Regulating EMT and MMP Expression. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:477-494. [PMID: 30909731 DOI: 10.1142/s0192415x19500241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carnosine is an endogenous dipeptide found in the vertebrate skeletal muscles that is usually obtained through the diet. To investigate the mechanism by which carnosine regulates the migration and intravasation of human colorectal cancer (CRC) cells, we used cultured HCT-116 cells as an experimental model in this study. We examined HCT-116 cell migratory and intravasive abilities and expression of epithelial-mesenchymal transition (EMT)-associated molecules and matrix metalloproteinases (MMPs) after carnosine treatment. The results showed that both migration and invasion were inhibited in cells treated with carnosine. We found significant decreases in Twist-1 protein levels and increases in E-cadherin protein levels in HCT-116 cells after carnosine exposure. Although plasminogen activator (uPA) and MMP-9 mRNA and protein levels were decreased, TIMP-1 mRNA and protein levels were increased. Furthermore, the cytosolic levels of phosphorylated I κ B (p-I κ B) and NF- κ B DNA-binding activity were reduced after carnosine treatment. These results indicate that carnosine inhibits the migration and intravasation of human CRC cells. The regulatory mechanism may occur by suppressing NF- κ B activity and modulating MMP and EMT-related gene expression in HCT-116 cells.
Collapse
Affiliation(s)
- Shu-Ling Hsieh
- * Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - ShuChen Hsieh
- † Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Po-Yu Lai
- * Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jyh-Jye Wang
- ‡ Department of Nutrition and Health Science, Fooyin University, Kaohsiung 83102, Taiwan
| | - Chien-Chun Li
- § Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Chung Wu
- ¶ Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| |
Collapse
|
9
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
10
|
Oppermann H, Dietterle J, Purcz K, Morawski M, Eisenlöffel C, Müller W, Meixensberger J, Gaunitz F. Carnosine selectively inhibits migration of IDH-wildtype glioblastoma cells in a co-culture model with fibroblasts. Cancer Cell Int 2018; 18:111. [PMID: 30123089 PMCID: PMC6090706 DOI: 10.1186/s12935-018-0611-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/04/2018] [Indexed: 01/19/2023] Open
Abstract
Background Glioblastoma (GBM) is a tumor of the central nervous system. After surgical removal and standard therapy, recurrence of tumors is observed within 6–9 months because of the high migratory behavior and the infiltrative growth of cells. Here, we investigated whether carnosine (β-alanine-l-histidine), which has an inhibitory effect on glioblastoma proliferation, may on the opposite promote invasion as proposed by the so-called “go-or-grow concept”. Methods Cell viability of nine patient derived primary (isocitrate dehydrogenase wildtype; IDH1R132H non mutant) glioblastoma cell cultures and of eleven patient derived fibroblast cultures was determined by measuring ATP in cell lysates and dehydrogenase activity after incubation with 0, 50 or 75 mM carnosine for 48 h. Using the glioblastoma cell line T98G, patient derived glioblastoma cells and fibroblasts, a co-culture model was developed using 12 well plates and cloning rings, placing glioblastoma cells inside and fibroblasts outside the ring. After cultivation in the presence of carnosine, the number of colonies and the size of the tumor cell occupied area were determined. Results In 48 h single cultures of fibroblasts and tumor cells, 50 and 75 mM carnosine reduced ATP in cell lysates and dehydrogenase activity when compared to the corresponding untreated control cells. Co-culture experiments revealed that after 4 week exposure to carnosine the number of T98G tumor cell colonies within the fibroblast layer and the area occupied by tumor cells was reduced with increasing concentrations of carnosine. Although primary cultured tumor cells did not form colonies in the absence of carnosine, they were eliminated from the co-culture by cell death and did not build colonies under the influence of carnosine, whereas fibroblasts survived and were healthy. Conclusions Our results demonstrate that the anti-proliferative effect of carnosine is not accompanied by an induction of cell migration. Instead, the dipeptide is able to prevent colony formation and selectively eliminates tumor cells in a co-culture with fibroblasts. Electronic supplementary material The online version of this article (10.1186/s12935-018-0611-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henry Oppermann
- 1Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Johannes Dietterle
- 1Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Katharina Purcz
- 1Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Markus Morawski
- 2Medical Faculty, Paul-Flechsig-Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | | | - Wolf Müller
- 3Department of Neuropathology, University Hospital Leipzig, Leipzig, Germany
| | - Jürgen Meixensberger
- 1Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Frank Gaunitz
- 1Department of Neurosurgery, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Hamza RZ, Al-Juaid NS, Althubaiti EH. Antioxidant Effect of Carnosine on Aluminum Oxide Nanoparticles (Al2O3-NPs)-induced Hepatotoxicity and Testicular Structure Alterations in Male Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.740.750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
l-carnosine induces apoptosis/cell cycle arrest via suppression of NF-κB/STAT1 pathway in HCT116 colorectal cancer cells. In Vitro Cell Dev Biol Anim 2018; 54:505-512. [DOI: 10.1007/s11626-018-0264-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
|
13
|
Glycotoxins: Dietary and Metabolic Origins; Possible Amelioration of Neurotoxicity by Carnosine, with Special Reference to Parkinson’s Disease. Neurotox Res 2018; 34:164-172. [PMID: 29417441 DOI: 10.1007/s12640-018-9867-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
|
14
|
Ou-yang L, Liu Y, Wang BY, Cao P, Zhang JJ, Huang YY, Shen Y, Lyu JX. Carnosine suppresses oxygen-glucose deprivation/recovery-induced proliferation and migration of reactive astrocytes of rats in vitro. Acta Pharmacol Sin 2018; 39:24-34. [PMID: 28933425 DOI: 10.1038/aps.2017.126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
Glial scar formation resulted from excessive astrogliosis limits axonal regeneration and impairs recovery of function, thus an intervention to ameliorate excessive astrogliosis is crucial for the recovery of neurological function after cerebral ischemia. In this study we investigated the effects of carnosine, an endogenous water-soluble dipeptide (β-alanyl-L-histidine), on astrogliosis of cells exposed to oxygen-glucose deprivation/recovery (OGD/R) in vitro. Primary cultured rat astrocytes exhibited a significant increase in proliferation at 24 h recovery after OGD for 2 h. Pretreatment with carnosine (5 mmol/L) caused G1 arrest of reactive astrocytes, significantly attenuated OGD/R-induced increase in cyclin D1 protein expression and suppressed OGD/R-induced proliferation of reactive astrocytes. Carnosine treatment also reversed glycolysis and ATP production, which was elevated at 24 h recovery after OGD. A marked increase in migration of reactive astrocytes was observed at 24 h after OGD, whereas carnosine treatment reversed the expression levels of MMP-9 and suppressed the migration of astrocytes. Furthermore, carnosine also improved neurite growth of cortical neurons co-cultured with astrocytes under ischemic conditions. These results demonstrate that carnosine may be a promising candidate for inhibiting astrogliosis and promoting neurological function recovery after ischemic stroke.
Collapse
|
15
|
Fouad AA, Qutub HO, Al Rashed AS, Al-Melhim WN. Therapeutic effect of carnosine in rat model of experimental liver carcinogenesis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:10-14. [PMID: 28863318 DOI: 10.1016/j.etap.2017.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The possible anticancer effect of carnosine versus doxorubicin was investigated against hepatocellular carcinoma (HCC) induced by trichloroacetic acid (TCA) (500mg/kg/day, p.o., for 5days) in rats. Following induction of HCC, rats treated with either carnosine (10mg/kg/day, i.p.), or doxorubicin (2.5mg/kg, i.p., once weekly), for 2 weeks. Carnosine significantly decreased serum alanine aminotransferase, and hepatic lipid peroxidation, nitric oxide, tumor necrosis factor-α, and nuclear factor-κB p65 unit, and significantly increased liver total antioxidant status in TCA-challenged rats. The effects of doxorubicin on oxidative, nitrative, and inflammatory biomarkers were less significant than carnosine. However, both carnosine and doxorubicin significantly induced liver tissue apoptotic biomarkers, Bax, cytosolic cytochrome C, and caspase-3, in a comparable manner. Additionally, carnosine and doxorubicin reduced the histopathological dysplastic changes, and alpha-fetoprotein expression in liver of rats with HCC. It was concluded that carnosine significantly protected against TCA-induced liver carcinogenesis in rats, through its antioxidant, antinitrative, and anti-inflammatory effects, and induction of apoptosis.
Collapse
Affiliation(s)
- Amr A Fouad
- Biomedical Sciences Department, Division of Pharmacology, College of Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| | - Hatem O Qutub
- Internal Medicine Department, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| | - Abdullatif S Al Rashed
- Student Research Committee, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Walid N Al-Melhim
- Biomedical Sciences Department, Division of Histopathology, College of Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
16
|
Ansari FA, Mahmood R. Carnosine and N-acetyl cysteine protect against sodium nitrite-induced oxidative stress in rat blood. Cell Biol Int 2017; 42:281-293. [DOI: 10.1002/cbin.10893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Fariheen Aisha Ansari
- Faculty of Life Sciences, Department of Biochemistry; Aligarh Muslim University; Aligarh 202002 UP India
| | - Riaz Mahmood
- Faculty of Life Sciences, Department of Biochemistry; Aligarh Muslim University; Aligarh 202002 UP India
| |
Collapse
|
17
|
Aging-induced changes in brain regional serotonin receptor binding: Effect of Carnosine. Neuroscience 2016; 319:79-91. [DOI: 10.1016/j.neuroscience.2016.01.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
|
18
|
Baye E, Ukropcova B, Ukropec J, Hipkiss A, Aldini G, de Courten B. Physiological and therapeutic effects of carnosine on cardiometabolic risk and disease. Amino Acids 2016; 48:1131-49. [PMID: 26984320 DOI: 10.1007/s00726-016-2208-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Obesity, type 2 diabetes (T2DM) and cardiovascular disease (CVD) are the most common preventable causes of morbidity and mortality worldwide. They represent major public health threat to our society. Increasing prevalence of obesity and T2DM contributes to escalating morbidity and mortality from CVD and stroke. Carnosine (β-alanyl-L-histidine) is a dipeptide with anti-inflammatory, antioxidant, anti-glycation, anti-ischaemic and chelating roles and is available as an over-the-counter food supplement. Animal evidence suggests that carnosine may offer many promising therapeutic benefits for multiple chronic diseases due to these properties. Carnosine, traditionally used in exercise physiology to increase exercise performance, has potential preventative and therapeutic benefits in obesity, insulin resistance, T2DM and diabetic microvascular and macrovascular complications (CVD and stroke) as well as number of neurological and mental health conditions. However, relatively little evidence is available in humans. Thus, future studies should focus on well-designed clinical trials to confirm or refute a potential role of carnosine in the prevention and treatment of chronic diseases in humans, in addition to advancing knowledge from the basic science and animal studies.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia.,Department of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.,Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alan Hipkiss
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia. .,Diabetes and Vascular Medicine Unit, Monash Health, Clayton, VIC, 3168, Australia.
| |
Collapse
|
19
|
Accardo A, Del Zoppo L, Morelli G, Condorelli DF, Barresi V, Musso N, Spampinato G, Bellia F, Tabbì G, Rizzarelli E. Liposome antibody–ionophore conjugate antiproliferative activity increases by cellular metallostasis alteration. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00461j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carnosine derivative containing liposomes functionalized with the Fab' fragment of Trastuzumab were synthesized.
Collapse
|
20
|
Banerjee S, Ghosh TK, Poddar MK. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system. Mech Ageing Dev 2015; 152:5-14. [DOI: 10.1016/j.mad.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
|
21
|
Huang CH, Jayakumar T, Chang CC, Fong TH, Lu SH, Thomas PA, Choy CS, Sheu JR. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture. Molecules 2015; 20:17720-34. [PMID: 26404213 PMCID: PMC6332280 DOI: 10.3390/molecules201017720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 11/29/2022] Open
Abstract
Melanoma is extremely resistant to chemotherapy and the death rate is increasing hastily worldwide. Extracellular matrix promotes the migration and invasion of tumor cells through the production of matrix metalloproteinase (MMP)-2 and -9. Evidence has shown that natural dietary antioxidants are capable of inhibiting cancer cell growth. Our recent studies showed that hinokitiol, a natural bioactive compound, inhibited vascular smooth muscle cell proliferation and platelets aggregation. The present study is to investigate the anticancer efficacy of hinokitiol against B16-F10 melanoma cells via modulating tumor invasion factors MMPs, antioxidant enzymes in vitro. An in vivo mice model of histological investigation was performed to study the patterns of elastic and collagen fibers. Hinokitiol inhibited the expression and activity of MMPs-2 and -9 in B16-F10 melanoma cells, as measured by western blotting and gelatin zymography, respectively. An observed increase in protein expression of MMPs 2/9 in melanoma cells was significantly inhibited by hinokitiol. Notably, hinokitiol (1–5 μM) increased the activities of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) from the reduction in melanoma cells. Also, hinokitiol (2–10 µM) concentration dependently reduced in vitro Fenton reaction induced hydroxyl radical (OH·) formation. An in vivo study showed that hinokitiol treatment increased elastic fibers (EF), collagens dispersion, and improved alveolar alterations in the lungs of B16/F10 injected mice. Overall, our findings propose that hinokitiol may be a potent anticancer candidate through down regulation of MMPs 9/2, reduction of OH· production and enhancement of antioxidant enzymes SOD and CAT.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Division of Urology, Department of Surgery, Taipei City Hospital, Zhongxiao Branch, Taipei 115, Taiwan.
| | - Thanasekaran Jayakumar
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chao-Chien Chang
- Department of Cardiology, Cathay General Hospital, Taipei 106, Taiwan.
| | - Tsorng-Harn Fong
- Department of Anatomy, Taipei Medical University, No. 250 Wu-Hsing Street, Taipei 110, Taiwan.
| | - Shing-Hwa Lu
- Division of Urology, Department of Surgery, Taipei City Hospital, Zhongxiao Branch, Taipei 115, Taiwan.
| | - Philip Aloysius Thomas
- Department of Microbiology, Institute of Ophthalmology, Joseph Eye Hospital, Tiruchirappalli 620001, Tamil Nadu, India.
| | - Cheuk-Sing Choy
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Emergency, Min-Sheng General Hospital, Taoyuan 330, Taiwan.
| | - Joen-Rong Sheu
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan.
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
22
|
Chuang CH, Liu CH, Lu TJ, Hu ML. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells. Toxicol Appl Pharmacol 2014; 281:310-6. [DOI: 10.1016/j.taap.2014.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/21/2014] [Accepted: 10/25/2014] [Indexed: 12/16/2022]
|
23
|
Banerjee S, Poddar MK. Carnosine: effect on aging-induced increase in brain regional monoamine oxidase-A activity. Neurosci Res 2014; 92:62-70. [PMID: 25450310 DOI: 10.1016/j.neures.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/22/2014] [Accepted: 09/25/2014] [Indexed: 11/19/2022]
Abstract
Aging is a natural biological process associated with several neurological disorders along with the biochemical changes in brain. Aim of the present investigation is to study the effect of carnosine (0.5-2.5μg/kg/day, i.t. for 21 consecutive days) on aging-induced changes in brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) mitochondrial monoamine oxidase-A (MAO-A) activity with its kinetic parameters. The results of the present study are: (1) The brain regional mitochondrial MAO-A activity and their kinetic parameters (except in Km of pons-medulla) were significantly increased with the increase of age (4-24 months), (2) Aging-induced increase of brain regional MAO-A activity including its Vmax were attenuated with higher dosages of carnosine (1.0-2.5μg/kg/day) and restored toward the activity that observed in young, though its lower dosage (0.5μg/kg/day) were ineffective in these brain regional MAO-A activity, (3) Carnosine at higher dosage in young rats, unlike aged rats significantly inhibited all the brain regional MAO-A activity by reducing their only Vmax excepting cerebral cortex, where Km was also significantly enhanced. These results suggest that carnosine attenuated the aging-induced increase of brain regional MAO-A activity by attenuating its kinetic parameters and restored toward the results of MAO-A activity that observed in corresponding brain regions of young rats.
Collapse
Affiliation(s)
- Soumyabrata Banerjee
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata 700 019, India
| | - Mrinal K Poddar
- Department of Biochemistry, University of Calcutta, 35, B.C. Road, Kolkata 700 019, India.
| |
Collapse
|
24
|
New Evidence Implicating 4-Hydroxynonenal in the Pathogenesis of Osteoarthritis In Vivo. Arthritis Rheumatol 2014; 66:2461-71. [DOI: 10.1002/art.38704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 05/08/2014] [Indexed: 12/15/2022]
|
25
|
Ditte Z, Ditte P, Labudova M, Simko V, Iuliano F, Zatovicova M, Csaderova L, Pastorekova S, Pastorek J. Carnosine inhibits carbonic anhydrase IX-mediated extracellular acidosis and suppresses growth of HeLa tumor xenografts. BMC Cancer 2014; 14:358. [PMID: 24886661 PMCID: PMC4061103 DOI: 10.1186/1471-2407-14-358] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Carbonic anhydrase IX (CA IX) is a transmembrane enzyme that is present in many types of solid tumors. Expression of CA IX is driven predominantly by the hypoxia-inducible factor (HIF) pathway and helps to maintain intracellular pH homeostasis under hypoxic conditions, resulting in acidification of the tumor microenvironment. Carnosine (β-alanyl-L-histidine) is an anti-tumorigenic agent that inhibits the proliferation of cancer cells. In this study, we investigated the role of CA IX in carnosine-mediated antitumor activity and whether the underlying mechanism involves transcriptional and translational modulation of HIF-1α and CA IX and/or altered CA IX function. METHODS The effect of carnosine was studied using two-dimensional cell monolayers of several cell lines with endogenous CA IX expression as well as Madin Darby canine kidney transfectants, three-dimensional HeLa spheroids, and an in vivo model of HeLa xenografts in nude mice. mRNA and protein expression and protein localization were analyzed by real-time PCR, western blot analysis, and immunofluorescence staining, respectively. Cell viability was measured by a flow cytometric assay. Expression of HIF-1α and CA IX in tumors was assessed by immunohistochemical staining. Real-time measurement of pH was performed using a sensor dish reader. Binding of CA IX to specific antibodies and metabolon partners was investigated by competitive ELISA and proximity ligation assays, respectively. RESULTS Carnosine increased the expression levels of HIF-1α and HIF targets and increased the extracellular pH, suggesting an inhibitory effect on CA IX-mediated acidosis. Moreover, carnosine significantly inhibited the growth of three-dimensional spheroids and tumor xenografts compared with untreated controls. Competitive ELISA showed that carnosine disrupted binding between CA IX and antibodies specific for its catalytic domain. This finding was supported by reduced formation of the functional metabolon of CA IX and anion exchanger 2 in the presence of carnosine. CONCLUSIONS Our results indicate that interaction of carnosine with CA IX leads to conformational changes of CA IX and impaired formation of its metabolon, which in turn disrupts CA IX function. These findings suggest that carnosine could be a promising anticancer drug through its ability to attenuate the activity of CA IX.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jaromir Pastorek
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic.
| |
Collapse
|
26
|
Bellia F, Vecchio G, Rizzarelli E. Carnosinases, their substrates and diseases. Molecules 2014; 19:2299-329. [PMID: 24566305 PMCID: PMC6271292 DOI: 10.3390/molecules19022299] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/07/2014] [Accepted: 01/28/2014] [Indexed: 02/08/2023] Open
Abstract
Carnosinases are Xaa-His dipeptidases that play diverse functions throughout all kingdoms of life. Human isoforms of carnosinase (CN1 and CN2) under appropriate conditions catalyze the hydrolysis of the dipeptides carnosine (β-alanyl-l-histidine) and homocarnosine (γ-aminobutyryl-l-histidine). Alterations of serum carnosinase (CN1) activity has been associated with several pathological conditions, such as neurological disorders, chronic diseases and cancer. For this reason the use of carnosinase levels as a biomarker in cerebrospinal fluid (CSF) has been questioned. The hydrolysis of imidazole-related dipeptides in prokaryotes and eukaryotes is also catalyzed by aminoacyl-histidine dipeptidases like PepD (EC 3.4.13.3), PepV (EC 3.4.13.19) and anserinase (EC 3.4.13.5). The review deals with the structure and function of this class of enzymes in physiological and pathological conditions. The main substrates of these enzymes, i.e., carnosine, homocarnosine and anserine (β-alanyl-3-methyl-l-histidine) will also be described.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Biostructure and Bioimaging, CNR, viale A. Doria 6, 95125 Catania, Italy.
| | - Graziella Vecchio
- Department of Chemical Sciences, University of Catania, viale A. Doria 6, 95125 Catania, Italy.
| | - Enrico Rizzarelli
- Institute of Biostructure and Bioimaging, CNR, viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
27
|
Inhibition of tumour cell growth by carnosine: some possible mechanisms. Amino Acids 2013; 46:327-37. [PMID: 24292217 DOI: 10.1007/s00726-013-1627-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
Abstract
The naturally occurring dipeptide carnosine (β-alanyl-L-histidine) has been shown to inhibit, selectively, growth of transformed cells mediated, at least in part, by depleting glycolytic ATP levels. The mechanism(s) responsible has/have yet to be determined. Here, we discuss a number of probable and/or possible processes which could, theoretically, suppress glycolytic activity which would decrease ATP supply and generation of metabolic intermediates required for continued cell reproduction. Possibilities include effects on (i) glycolytic enzymes, (ii) metabolic regulatory activities, (iii) redox biology, (iv) protein glycation, (v) glyoxalase activity, (vi) apoptosis, (vii) gene expression and (viii) metastasis. It is possible, by acting at various sites that this pluripotent dipeptide may be an example of an endogenous "smart drug".
Collapse
|
28
|
Korean Red Ginseng Suppresses Metastasis of Human Hepatoma SK-Hep1 Cells by Inhibiting Matrix Metalloproteinase-2/-9 and Urokinase Plasminogen Activator. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:965846. [PMID: 22570673 PMCID: PMC3337628 DOI: 10.1155/2012/965846] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/06/2012] [Indexed: 01/01/2023]
Abstract
Korean red ginseng and ginsenosides have been claimed to possess wide spectrum of medicinal effects, of which anticancer effect is one. The present study was undertaken to investigate the antimetastatic effect of Korean red ginseng on human hepatoma as well as possible mechanisms. The inhibitory effect of the water extract of Korean red ginseng (WKRG) on the invasion and motility of SK-Hep1 cells was evaluated by the Boyden chamber assay in vitro. Without causing cytotoxicity, WKRG exerted a dose-dependent inhibitory effect on the invasion and motility, but not adhesion, of highly metastatic SK-Hep1 cells. Zymography analyses revealed significant downregulating effects on MMP-2, MMP-9, and uPA activities in SK-Hep1 cells. Western blot analyses also showed that WKRG treatment caused dose-dependent decreases in MMP-2 and MMP-9 protein expressions. Moreover, WKRG increased the levels of TIMP-1, TIMP-2, and PAI-1. The present study not only demonstrated that invasion and motility of cancer cells were inhibited by WKRG, but also indicated that such effects were likely associated with the decrease in MMP-2/-9 and uPA expressions of SK-Hep1 cells.
Collapse
|
29
|
Boldyrev AA. Carnosine: New concept for the function of an old molecule. BIOCHEMISTRY (MOSCOW) 2012; 77:313-26. [DOI: 10.1134/s0006297912040013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Energy metabolism, proteotoxic stress and age-related dysfunction - protection by carnosine. Mol Aspects Med 2011; 32:267-78. [PMID: 22020113 DOI: 10.1016/j.mam.2011.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 10/11/2011] [Indexed: 01/09/2023]
Abstract
This review will discuss the relationship between energy metabolism, protein dysfunction and the causation and modulation of age-related proteotoxicity and disease. It is proposed that excessive glycolysis, rather than aerobic (mitochondrial) activity, could be causal to proteotoxic stress and age-related pathology, due to the generation of endogenous glycating metabolites: the deleterious role of methylglyoxal (MG) is emphasized. It is suggested that TOR inhibition, exercise, fasting and increased mitochondrial activity suppress formation of MG (and other deleterious low molecular weight carbonyl compounds) which could control onset and progression of proteostatic dysfunction. Possible mechanisms by which the endogenous dipeptide, carnosine, which, by way of its putative aldehyde-scavenging activity, may control age-related proteotoxicity, cellular dysfunction and pathology, including cancer, are also considered. Whether carnosine could be regarded as a rapamycin mimic is briefly discussed.
Collapse
|
31
|
Suer C, Dolu N, Artis AS, Sahin L, Aydogan S. Electrophysiological evidence of biphasic action of carnosine on long-term potentiation in urethane-anesthetized rats. Neuropeptides 2011; 45:77-81. [PMID: 21163526 DOI: 10.1016/j.npep.2010.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 11/24/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
Carnosine is a dipeptide synthesized by the carnosine synthetase from β-alanine and l-histidine. The well-known effects of carnosine may be related with mechanisms producing long-term potentiation which is one of the electrophysiological signs of memory. In the present study we aimed to investigate the effect of four different doses of carnosine on long-term potentiation in urethane-anesthetized rat. A bipolar stimulating electrode was placed in the medial perforant path and a double-barrel glass micropipette was placed in the dentate gyrus as the recording electrode. Artificial cerebrospinal fluid (in the control group) or carnosine (0.1, 1, 10, and 100μg/μL) was infused into the dentate gyrus. Our results showed that the I/O curve of the excitatory postsynaptic potential slope or population spike amplitude was not significantly shifted by carnosine. We found that population spike amplitude increased to 244% and 287% at the dose of 100μg/μL in the post-tetanic and induction phases, respectively, but decreased to 163% and 186% at the dose of 0.1μg/μL and to 145% and 162% at the dose of 1μg/μL when compared with 203% and 232% of the control values. However, there were no significant differences for the slope of excitatory postsynaptic potential. Carnosine had no effect on the EPSP slope or PS amplitude recorded from the dentate gyrus in response to test stimuli when high-frequency stimulation was not delivered. In the present study, we speculated that the effects of carnosine in lower or higher doses could be explained by its effect on different processes, such as soluble guanylyl cyclase inhibition or the conversion of carnosine into histamine.
Collapse
Affiliation(s)
- Cem Suer
- Department of Physiology, Faculty of Medicine, Erciyes University, 38039 Kayseri, Turkey.
| | | | | | | | | |
Collapse
|
32
|
Huang GJ, Yang CM, Chang YS, Amagaya S, Wang HC, Hou WC, Huang SS, Hu ML. Hispolon suppresses SK-Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:9468-75. [PMID: 20698552 DOI: 10.1021/jf101508r] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cancer metastasis is a primary cause of cancer death. Hispolon is an active phenolic compound of Phellinus linteus, a mushroom that has recently been shown to have antioxidant and anticancer activities. In this study, we first observed that hispolon exerted a dose-dependent inhibitory effect on invasion and motility, but not on adhesion, of the highly metastatic SK-Hep1 cells in the absence of cytotoxicity. Mechanistically, hispolon decreased the expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-plasminogen activator (uPA) in a concentration-dependent manner. Hispolon also inhibited phosphorylation of extracellular signaling-regulating kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase/serine/threonine protein kinase (or protein kinase B (PI3K/Akt), and focal adhesion kinase (FAK). Furthermore, treatment of SK-Hep1 cells with an inhibitor specific for ERK1/2 (PD98256) decreased the expression of MMP-2, and MMP-9. These results demonstrate that hispolon can inhibit the metastasis of SK-Hep1 cells by reduced expression of MMP-2, MMP-9, and uPA through the suppression of the FAK signaling pathway and of the activity of PI3K/Akt and Ras homologue gene family, member A (RhoA). These findings suggest that hispolon may be used as an antimetastatic agent.
Collapse
Affiliation(s)
- Guan-Jhong Huang
- Institute of Chinese Pharmaceutical Sciences, College of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung City 404, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Kim SC, Magesh V, Jeong SJ, Lee HJ, Ahn KS, Lee HJ, Lee EO, Kim SH, Lee MH, Kim JH, Kim SH. Ethanol extract of Ocimum sanctum exerts anti-metastatic activity through inactivation of matrix metalloproteinase-9 and enhancement of anti-oxidant enzymes. Food Chem Toxicol 2010; 48:1478-82. [PMID: 20233602 DOI: 10.1016/j.fct.2010.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/11/2010] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Ocimum sanctum has been known to possess various beneficial properties including anti-oxidative, anti-inflammatory and anti-cancer activities. In the present study, we investigated that ethanol extracts of O. sanctum (EEOS) had anti-metastatic activity through activation of anti-oxidative enzymes. EEOS exerted cytotoxicity against Lewis lung carcinoma (LLC) cells. Also, EEOS significantly inhibited cell adhesion and invasion as well as activities of matrix metalloproteinase-9 (MMP-9), but not MMP-2, indicating the important role of MMP-9 in anti-metastatic regulation of EEOS. In addition, EEOS significantly reduced the tumor nodule formation and lung weight in LLC-injected mice. Inhibitory effect of EEOS on metastasis was further confirmed by using hematoxylin and eosin (H&E) staining. Notably, we also found that EEOS enhanced activities of anti-oxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in a concentration-dependent manner. Taken together, our findings support that EEOS can be a potent anti-metastatic candidate through inactivation of MMP-9 and enhancement of anti-oxidant enzymes.
Collapse
Affiliation(s)
- Sun-Chae Kim
- Cancer Preventive Material Development Research Center, College of Oriental Medicine, Kyung Hee University, Seoul, South Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chuang CH, Huang CS, Hu ML. Vitamin E and rutin synergistically inhibit expression of vascular endothelial growth factor through down-regulation of binding activity of activator protein-1 in human promyelocytic leukemia (HL-60) cells. Chem Biol Interact 2010; 183:434-41. [DOI: 10.1016/j.cbi.2009.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/05/2009] [Accepted: 12/08/2009] [Indexed: 01/16/2023]
|
35
|
Hipkiss AR. Carnosine and its possible roles in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:87-154. [PMID: 19595386 DOI: 10.1016/s1043-4526(09)57003-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dipeptide carnosine has been observed to exert antiaging activity at cellular and whole animal levels. This review discusses the possible mechanisms by which carnosine may exert antiaging action and considers whether the dipeptide could be beneficial to humans. Carnosine's possible biological activities include scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS), chelator of zinc and copper ions, and antiglycating and anticross-linking activities. Carnosine's ability to react with deleterious aldehydes such as malondialdehyde, methylglyoxal, hydroxynonenal, and acetaldehyde may also contribute to its protective functions. Physiologically carnosine may help to suppress some secondary complications of diabetes, and the deleterious consequences of ischemic-reperfusion injury, most likely due to antioxidation and carbonyl-scavenging functions. Other, and much more speculative, possible functions of carnosine considered include transglutaminase inhibition, stimulation of proteolysis mediated via effects on proteasome activity or induction of protease and stress-protein gene expression, upregulation of corticosteroid synthesis, stimulation of protein repair, and effects on ADP-ribose metabolism associated with sirtuin and poly-ADP-ribose polymerase (PARP) activities. Evidence for carnosine's possible protective action against secondary diabetic complications, neurodegeneration, cancer, and other age-related pathologies is briefly discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinicial and Experimental Medicine, College of Medical and Dental Sciences, The Univeristy of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|