1
|
Kumari S, Sharma S, Advani D, Khosla A, Kumar P, Ambasta RK. Unboxing the molecular modalities of mutagens in cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62111-62159. [PMID: 34611806 PMCID: PMC8492102 DOI: 10.1007/s11356-021-16726-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/22/2021] [Indexed: 04/16/2023]
Abstract
The etiology of the majority of human cancers is associated with a myriad of environmental causes, including physical, chemical, and biological factors. DNA damage induced by such mutagens is the initial step in the process of carcinogenesis resulting in the accumulation of mutations. Mutational events are considered the major triggers for introducing genetic and epigenetic insults such as DNA crosslinks, single- and double-strand DNA breaks, formation of DNA adducts, mismatched bases, modification in histones, DNA methylation, and microRNA alterations. However, DNA repair mechanisms are devoted to protect the DNA to ensure genetic stability, any aberrations in these calibrated mechanisms provoke cancer occurrence. Comprehensive knowledge of the type of mutagens and carcinogens and the influence of these agents in DNA damage and cancer induction is crucial to develop rational anticancer strategies. This review delineated the molecular mechanism of DNA damage and the repair pathways to provide a deep understanding of the molecular basis of mutagenicity and carcinogenicity. A relationship between DNA adduct formation and cancer incidence has also been summarized. The mechanistic basis of inflammatory response and oxidative damage triggered by mutagens in tumorigenesis has also been highlighted. We elucidated the interesting interplay between DNA damage response and immune system mechanisms. We addressed the current understanding of DNA repair targeted therapies and DNA damaging chemotherapeutic agents for cancer treatment and discussed how antiviral agents, anti-inflammatory drugs, and immunotherapeutic agents combined with traditional approaches lay the foundations for future cancer therapies.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
2
|
Rabajdová M, Špaková I, Klepcová Z, Smolko L, Abrahamovská M, Urdzík P, Mareková M. Zinc(II) niflumato complex effects on MMP activity and gene expression in human endometrial cell lines. Sci Rep 2021; 11:19086. [PMID: 34580366 PMCID: PMC8476601 DOI: 10.1038/s41598-021-98512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Endometriosis is a chronic inflammatory disease which increasingly affects young women under 35 years of age and leads to subfertility even infertility. Analysis of the cytotoxic effect of zinc(II) niflumato complex with neocuproine ([Zn(neo)(nif)2] or Zn-Nif) on immortalized human endometriotic cell line (12Z) and on control immortalized human endometrial stromal cell line (hTERT) was performed using xCELLigence technology for approximately 72 h following the treatment with Zn-Nif as well as cell viability Trypan Blue Assay. 12Z cell line proliferated more slowly compared to unaffected cells, whereas hTERT cells did not show similar behavior after treatment. The complex probably reduces the effect of pro-inflammatory pathways due to the effect of NSAID, while presence of zinc might reduce the level of ROS and regulate ER2 levels and MMP activity. The observed effects and high selectivity for rapidly proliferating cells with increased inflammatory activity suggest a good prognosis of successful decrease of endometriosis stage with this complex.
Collapse
Affiliation(s)
- Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia.
| | - Zuzana Klepcová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Michaela Abrahamovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, Trieda SNP 1, 040 11, Košice, Slovakia
| |
Collapse
|
3
|
Catalán M, Olmedo I, Faúndez J, Jara JA. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity. Int J Mol Sci 2020; 21:E8684. [PMID: 33217901 PMCID: PMC7698797 DOI: 10.3390/ijms21228684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Interest in tumor cell mitochondria as a pharmacological target has been rekindled in recent years. This attention is due in part to new publications documenting heterogenous characteristics of solid tumors, including anoxic and hypoxic zones that foster cellular populations with differentiating metabolic characteristics. These populations include tumor-initiating or cancer stem cells, which have a strong capacity to adapt to reduced oxygen availability, switching rapidly between glycolysis and oxidative phosphorylation as sources of energy and metabolites. Additionally, this cell subpopulation shows high chemo- and radioresistance and a high capacity for tumor repopulation. Interestingly, it has been shown that inhibiting mitochondrial function in tumor cells affects glycolysis pathways, cell bioenergy, and cell viability. Therefore, mitochondrial inhibition may be a viable strategy for eradicating cancer stem cells. In this context, medicinal chemistry research over the last decade has synthesized and characterized "vehicles" capable of transporting novel or existing pharmacophores to mitochondrial tumor cells, based on mechanisms that exploit the physicochemical properties of the vehicles and the inherent properties of the mitochondria. The pharmacophores, some of which have been isolated from plants and others, which were synthesized in the lab, are diverse in chemical nature. Some of these molecules are active, while others are prodrugs that have been evaluated alone or linked to mitochondria-targeted agents. Finally, researchers have recently described drugs with well-proven safety and efficacy that may exert a mitochondria-specific inhibitory effect in tumor cells through noncanonical mechanisms. The effectiveness of these molecules may be improved by linking them to mitochondrial carrier molecules. These promising pharmacological agents should be evaluated alone and in combination with classic chemotherapeutic drugs in clinical studies.
Collapse
Affiliation(s)
- Mabel Catalán
- Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Ivonne Olmedo
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Jennifer Faúndez
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| | - José A. Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Olivos 943, Santiago 8380544, Chile;
| |
Collapse
|
4
|
Rho-Kinase inhibitors ameliorate diclofenac-induced cardiotoxicity in chloroquine-treated adjuvant arthritic rats. Life Sci 2020; 254:117605. [DOI: 10.1016/j.lfs.2020.117605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022]
|
5
|
Gouda AM, Beshr EA, Almalki FA, Halawah HH, Taj BF, Alnafaei AF, Alharazi RS, Kazi WM, AlMatrafi MM. Arylpropionic acid-derived NSAIDs: New insights on derivatization, anticancer activity and potential mechanism of action. Bioorg Chem 2019; 92:103224. [PMID: 31491568 DOI: 10.1016/j.bioorg.2019.103224] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022]
Abstract
NSAIDs displayed chemopreventive and anticancer effects against several types of cancers. Moreover, combination of NSAIDs with anticancer agents resulted in enhanced anticancer activity. These findings have attracted much attention of researchers working in this field. The 2-arylpropionic acid-derived NSAIDs represent one of the most widely used anti-inflammatory agents. Additionally, they displayed antiproliferative activities against different types of cancer cells. Large volume of research was performed to identify molecular targets responsible for this activity. However, the exact mechanism underlying the anticancer activity of profens is still unclear. In this review article, the anticancer potential, structure activity relationship and synthesis of selected profen derivatives were summarized. This review is focused also on non-COX targets which can mediate the anticancer activity of this derivatives. The data in this review highlighted profens as promising lead compounds in future research to develop potent and safe anticancer agents.
Collapse
Affiliation(s)
- Ahmed M Gouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Eman A Beshr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hadeel H Halawah
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Batool Fawzi Taj
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Athir Faiz Alnafaei
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Weam Mahmood Kazi
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Malak M AlMatrafi
- B-Pharmacy Program, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
6
|
Vallée A, Lecarpentier Y, Vallée JN. Targeting the Canonical WNT/β-Catenin Pathway in Cancer Treatment Using Non-Steroidal Anti-Inflammatory Drugs. Cells 2019; 8:cells8070726. [PMID: 31311204 PMCID: PMC6679009 DOI: 10.3390/cells8070726] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and oxidative stress are common and co-substantial pathological processes accompanying and contributing to cancers. Numerous epidemiological studies have indicated that non-steroidal anti-inflammatory drugs (NSAIDs) could have a positive effect on both the prevention of cancer and tumor therapy. Numerous hypotheses have postulated that NSAIDs could slow tumor growth by acting on both chronic inflammation and oxidative stress. This review takes a closer look at these hypotheses. In the cancer process, one of the major signaling pathways involved is the WNT/β-catenin pathway, which appears to be upregulated. This pathway is closely associated with both chronic inflammation and oxidative stress in cancers. The administration of NSAIDs has been observed to help in the downregulation of the WNT/β-catenin pathway and thus in the control of tumor growth. NSAIDs act as PPARγ agonists. The WNT/β-catenin pathway and PPARγ act in opposing manners. PPARγ agonists can promote cell cycle arrest, cell differentiation, and apoptosis, and can reduce inflammation, oxidative stress, proliferation, invasion, and cell migration. In parallel, the dysregulation of circadian rhythms (CRs) contributes to cancer development through the upregulation of the canonical WNT/β-catenin pathway. By stimulating PPARγ expression, NSAIDs can control CRs through the regulation of many key circadian genes. The administration of NSAIDs in cancer treatment would thus appear to be an interesting therapeutic strategy, which acts through their role in regulating WNT/β-catenin pathway and PPARγ activity levels.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, 75004 Paris, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
7
|
Abstract
In recent years, the reports on using nonsteroidal anti-inflammatory drugs (NSAIDs) for cancer prevention and treatment have been on the rise. In 2017, the US Preventive Services Working Group issued primary prevention guidelines on the use of NSAIDs, especially aspirin, for cardiovascular disease and colorectal cancer, and formally established the role and status of aspirin in cancer prevention. However, the mechanism of NSAIDs on preventing cancer is still not clear. In this paper, the progress of the application of NSAIDs, especially aspirin, in the prevention and treatment of tumors in recent years is summarized, and new ideas and directions for the follow-up study are also discussed.
Collapse
Affiliation(s)
- Zhen Zhang
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, People's Republic of China, , .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi Province 710069, People's Republic of China, ,
| | - Fulin Chen
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, People's Republic of China, , .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi Province 710069, People's Republic of China, ,
| | - Lijun Shang
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi Province 710069, People's Republic of China, , .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, Shaanxi Province 710069, People's Republic of China, , .,School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, UK,
| |
Collapse
|
8
|
Ghosh R, Alajbegovic A, Gomes AV. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:536962. [PMID: 26457127 PMCID: PMC4592725 DOI: 10.1155/2015/536962] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/24/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Azra Alajbegovic
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Dyakova L, Culita DC, Zhivkova T, Georgieva M, Kalfin R, Miloshev G, Alexandrov M, Marinescu G, Patron L, Alexandrova R. 3d metal complexes with meloxicam as therapeutic agents in the fight against human glioblastoma multiforme and cervical carcinoma. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1074873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Hiľovská L, Jendželovský R, Jendželovská Z, Kovaľ J, Fedoročko P. Downregulation of BCRP and anti-apoptotic proteins by proadifen (SKF-525A) is responsible for the enhanced mitoxantrone accumulation and toxicity in mitoxantrone-resistant human promyelocytic leukemia cells. Int J Oncol 2015; 47:1572-84. [PMID: 26252082 DOI: 10.3892/ijo.2015.3116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/13/2015] [Indexed: 11/05/2022] Open
Abstract
Multidrug resistance caused by the overexpression of ABC transporter proteins in cancer cells remains a major obstacle limiting chemotherapy efficacy. Drugs inhibiting these transporters have been shown to increase the anti-proliferative properties of chemotherapeutics. As we previously described, proadifen, a P450 monooxygenase inhibitor, might also be able to inhibit some ABC transporters, including breast cancer resistance protein (BCRP). Because mitoxantrone (MTX) is a strong BCRP substrate and is often used in the treatment of leukemia, we investigated the effect of 24 h proadifen pre-treatment on the cytotoxicity of MTX in leukemic cell lines that are sensitive to MTX (HL-60) and MTX-resistant ABCG2-overexpressing subclone (cBCRP). We show for the first time that proadifen is able to enhance the cytotoxic properties of MTX in cBCRP cells, particularly through the inhibition of BCRP expression and activity. This proadifen-MTX synergism was also mediated by the inhibition of various cellular proteins engaged in apoptosis, including Mc-1, Bcl-xL, survivin and activation of procaspase-3. Proadifen also decreased the expression of γH2AX, which is involved in the recruitment of reparation proteins. Moreover, the inhibition of DNA damage repair proteins Ku86 and B23 after proadifen treatment indicate a possible role of proadifen in DNA repair blockage, thus suppressing the reparation rate of MTX-induced DSBs.
Collapse
Affiliation(s)
- Lucia Hiľovská
- Institute of Biology and Ecology, Department of Cellular Biology, Pavol Jozef Šafárik University in Košice, SK-040 01 Košice, Slovak Republic
| | - Rastislav Jendželovský
- Institute of Biology and Ecology, Department of Cellular Biology, Pavol Jozef Šafárik University in Košice, SK-040 01 Košice, Slovak Republic
| | - Zuzana Jendželovská
- Institute of Biology and Ecology, Department of Cellular Biology, Pavol Jozef Šafárik University in Košice, SK-040 01 Košice, Slovak Republic
| | - Ján Kovaľ
- Institute of Biology and Ecology, Department of Cellular Biology, Pavol Jozef Šafárik University in Košice, SK-040 01 Košice, Slovak Republic
| | - Peter Fedoročko
- Institute of Biology and Ecology, Department of Cellular Biology, Pavol Jozef Šafárik University in Košice, SK-040 01 Košice, Slovak Republic
| |
Collapse
|
11
|
Hitting the Bull's-Eye in Metastatic Cancers-NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals (Basel) 2015; 8:62-106. [PMID: 25688484 PMCID: PMC4381202 DOI: 10.3390/ph8010062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs.
Collapse
|
12
|
The proapoptotic effect of traditional and novel nonsteroidal anti-inflammatory drugs in mammalian and yeast cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:504230. [PMID: 23983899 PMCID: PMC3747411 DOI: 10.1155/2013/504230] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have long been used to treat pain, fever, and inflammation. However, mounting evidence shows that NSAIDs, such as aspirin, have very promising antineoplastic properties. The chemopreventive, antiproliferative behaviour of NSAIDs has been associated with both their inactivation of cyclooxygenases (COX) and their ability to induce apoptosis via pathways that are largely COX-independent. In this review, the various proapoptotic pathways induced by traditional and novel NSAIDs such as phospho-NSAIDs, hydrogen sulfide-releasing NSAIDs and nitric oxide-releasing NSAIDs in mammalian cell lines are discussed, as well as the proapoptotic effects of NSAIDs on budding yeast which retains the hallmarks of mammalian apoptosis. The significance of these mechanisms in terms of the role of NSAIDs in effective cancer prevention is considered.
Collapse
|
13
|
Targeting Bax interaction sites reveals that only homo-oligomerization sites are essential for its activation. Cell Death Differ 2013; 20:744-54. [PMID: 23392123 DOI: 10.1038/cdd.2013.4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bax is a proapoptotic Bcl-2 family member that has a central role in the initiation of mitochondria-dependent apoptosis. However, the mechanism of Bax activation during apoptosis remains unsettled. It is believed that the activation of Bax is mediated by either dissociation from prosurvival Bcl-2 family members, or direct association with BH3-only members. Several interaction sites on Bax that mediate its interactions with other Bcl-2 family members, as well as its proapoptotic activity, have been identified in previous studies by other groups. To rigorously investigate the functional role of these interaction sites, we knocked in their respective mutants using HCT116 colon cancer cells, in which apoptosis induced by several stimuli is strictly Bax-dependent. Bax-mediated apoptosis was intact upon knock-in (KI) of K21E and D33A, which were shown to block the interaction of Bax with BH3-only activators. Apoptosis was partially reduced by KI of D68R, which impairs the interaction of Bax with prosurvival members, and S184V, a constitutively mitochondria-targeting mutant. In contrast, apoptosis was largely suppressed by KI of L70A/D71A, which blocks homo-oligomerization of Bax and its binding to prosurvival Bcl-2 family proteins. Collectively, our results suggest that the activation of endogenous Bax in HCT116 cells is dependent on its homo-oligomerization sites, but not those previously shown to interact with BH3-only activators or prosurvival proteins only. We therefore postulate that critical interaction sites yet to be identified, or mechanisms other than protein-protein interactions, need to be pursued to delineate the mechanism of Bax activation during apoptosis.
Collapse
|
14
|
Lee BS, Kang SU, Hwang HS, Kim YS, Sung ES, Shin YS, Lim YC, Kim CH. An agonistic antibody to human death receptor 4 induces apoptotic cell death in head and neck cancer cells through mitochondrial ROS generation. Cancer Lett 2012; 322:45-57. [PMID: 22353688 DOI: 10.1016/j.canlet.2012.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 12/13/2022]
Abstract
The proapoptotic death receptor 4 (DR4), along with DR5, is currently regarded as a promising target for development of agonistic anti-cancer agents due to its tumor-selective apoptosis-inducing ability with no significant cytotoxicity to normal cells. In this study, we examine susceptibility of various head and neck cancer (HNC) cells and mechanism of cell death to an anti-DR4 agonistic monoclonal antibody (mAb), AY4. AY4 as a single agent induced caspase-dependent apoptotic cell death of KB and HN9, but not in SNU899 and FaDu cell lines. AY4 treatment resulted in accumulation of intracellular reactive oxygen species (ROS) generated from mitochondria in AY4-sensitive cells. Blockade of ROS production by N-acetyl-l-cysteine (NAC) resulted in protection of AY4-sensitive cells against AY4-induced apoptosis. ROS generation induced by AY4 treatment triggered down-regulation of anti-apoptotic molecules of Bcl-xL and X-linked inhibitor of apoptosis (XIAP) without affecting the expression levels of DR4, Mcl-1, and survivin. AY4 also inhibited growth of pre-established HN9 tumors in a nude mouse xenograft model and did not show noticeable cytotoxicity in a zebrafish model. Our results provide further insight into the mechanism of DR4-mediated cell death and potential use of AY4 mAb as an anti-cancer therapeutic agent in AY4-sensitive HNC types.
Collapse
Affiliation(s)
- Bok-Soon Lee
- Department of Otolaryngology, Ajou University, Suwon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 2010; 14:45-55. [PMID: 20001209 DOI: 10.1517/14728220903431069] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE OF THE FIELD Nuclear factor kappa B (NF-kappaB) is activated by a variety of cancer-promoting agents. The reciprocal activation between NF-kappaB and inflammatory cytokines makes NF-kappaB important for inflammation-associated cancer development. Both the constitutive and anticancer therapeutic-induced NF-kappaB activation blunts the anticancer activities of the therapy. Elucidating the roles of NF-kappaB in cancer facilitates developing approaches for cancer prevention and therapy. AREAS COVERED IN THIS REVIEW By searching PubMed, we summarize the progress of studies on NF-kappaB in carcinogenesis and cancer cells' drug resistance in recent 10 years. WHAT THE READER WILL GAIN The mechanisms by which NF-kappaB activation pathways are activated; the roles and mechanisms of NF-kappaB in cell survival and proliferation, and in carcinogenesis and cancer cells' response to therapy; recent development of NF-kappaB-modulating means and their application in cancer prevention and therapy. TAKE HOME MESSAGE NF-kappaB is involved in cancer development, modulating NF-kappaB activation pathways has important implications in cancer prevention and therapy. Due to the complexity of NF-kappaB roles in different cancers, careful evaluation of NF-kappaB's in each cancer type is crucial in this regard. More cancer cell-specific NF-kappaB inhibiting means are desired for improving anticancer efficacy and reducing systemic toxicity.
Collapse
Affiliation(s)
- Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
| | | | | | | |
Collapse
|
16
|
Marchbank T, Weaver G, Nilsen-Hamilton M, Playford RJ. Pancreatic secretory trypsin inhibitor is a major motogenic and protective factor in human breast milk. Am J Physiol Gastrointest Liver Physiol 2009; 296:G697-703. [PMID: 19147803 DOI: 10.1152/ajpgi.90565.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colostrum is the first milk produced after birth and is rich in immunoglobulins and bioactive molecules. We examined whether human colostrum and milk contained pancreatic secretory trypsin inhibitor (PSTI), a peptide of potential relevance for mucosal defense and, using in vitro and in vivo models, determined whether its presence influenced gut integrity and repair. Human milk was collected from individuals over various times from parturition and PSTI concentrations determined with the use of immunoassay. Human milk samples were analyzed for proliferation and promigratory activity (wounded monolayers) and antiapoptotic activity (caspase-3 activity) with the use of intestinal HT29 cells with or without neutralizing antibodies to PSTI and epidermal growth factor (EGF). Rats were restrained and given indomethacin to induce gastric injury. Effect of gavage with human breast milk with or without neutralizing antibodies on amount of injury were compared with animals receiving a commercial formula feed. PSTI is secreted into human milk, with colostrum containing a much higher concentration of PSTI than human milk obtained later. Human milk stimulated migration and proliferation about threefold and reduced indomethacin-induced apoptosis by about 70-80%. Sixty-five percent of the migratory effect of human milk could be removed by immunoneutralization of PSTI. PSTI worked synergistically with EGF in mediating these effects. Gastric damage in rats was reduced by about 75% in the presence of human milk and was more efficacious than the formula feed (P<0.001). Protective effects of the milk were reduced by about 60% by PSTI immunoneutralization. We concluded that PSTI is secreted into human milk at concentrations that have probable pathophysiological relevance.
Collapse
Affiliation(s)
- Tania Marchbank
- Centre for Gastroenterology, Institute of Cell and Molecular Science, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, and Queen Charlotte's Hospital, Turner St., London E1 2AD, UK
| | | | | | | |
Collapse
|
17
|
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used anti-inflammatory agents in clinic. Recently, they are also used to prevent the progression of cardiovascular disease and the pain of muscle, bone and arthrosis. However, long-term and generous use may cause mucosal damages of the stomach and duodenum. With the improvement of clinical diagnostic and therapeutic approaches, it has been found that more and more damages of the intestinal mucosa were being identified. This article reviews the enteropathy caused by NSAIDs and its pathogenic mechanism, prevention and treatment.
Collapse
|