1
|
Miyaguti NADS, Chiocchetti GDME, Salgado CDM, Lopes-Aguiar L, Viana LR, Blanchard L, dos Santos RW, Gomes-Marcondes MCC. Walker-256 Tumour-Induced Cachexia Altered Liver Metabolomic Profile and Function in Weanling and Adult Rats. Metabolites 2021; 11:metabo11120831. [PMID: 34940589 PMCID: PMC8705353 DOI: 10.3390/metabo11120831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer cachexia occurs in up to 85% of advanced cancer patients, affecting different tissues and organs, mainly the liver, which plays a central role in body metabolism control. However, liver responses to cancer cachexia progression are still poorly understood. Considering the possible different challenges provided by the rodent’s phase of life and the cachexia progression, we evaluated the liver metabolic alterations affected by Walker-256 tumour growth in weanling and young-adult rats. For this, we applied a metabolomics approach associated with protein and gene expression analyses. Higher amino acid levels and impaired glucose metabolism were important features in tumour-bearing animals’ liver tissue. The weanling hosts had more pronounced cachexia, with higher carcass spoliation, liver lipid metabolism and impaired CII and CIV mitochondrial complexes. The liver alterations in young adult tumour-bearing rats were related to energy status and nucleotide metabolites, such as uridine, NAD+, xanthosine, hypoxanthine and inosine. In conclusion, the Walker-256 tumour-induced cachexia impaired liver metabolism, being more severe in the weanling hosts. Further studies are needed to correlate these changes in the preclinical model, which can be correlated to the clinical features of cancer cachexia, allowing for a translational potential involving the liver function and its responses to potential treatments.
Collapse
Affiliation(s)
- Natália Angelo da Silva Miyaguti
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
- Correspondence: (N.A.d.S.M.); (M.C.C.G.-M.); Tel.: +55-19-3521-6194 (M.C.C.G.-M.)
| | - Gabriela de Matuoka e Chiocchetti
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Carla de Moraes Salgado
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Leisa Lopes-Aguiar
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Lais Rosa Viana
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Lea Blanchard
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
- Biology Department, Université d’Angers, 4900 Angers, France
| | - Rogério Willians dos Santos
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
| | - Maria Cristina Cintra Gomes-Marcondes
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Campinas 13083862, SP, Brazil; (G.d.M.e.C.); (C.d.M.S.); (L.L.-A.); (L.R.V.); (L.B.); (R.W.d.S.)
- Correspondence: (N.A.d.S.M.); (M.C.C.G.-M.); Tel.: +55-19-3521-6194 (M.C.C.G.-M.)
| |
Collapse
|
2
|
van de Worp WRPH, Schols AMWJ, Theys J, van Helvoort A, Langen RCJ. Nutritional Interventions in Cancer Cachexia: Evidence and Perspectives From Experimental Models. Front Nutr 2020; 7:601329. [PMID: 33415123 PMCID: PMC7783418 DOI: 10.3389/fnut.2020.601329] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal muscle loss and is associated with poor clinical outcome, decreased survival and negatively influences cancer therapy. No curative treatments are available for cancer cachexia, but nutritional intervention is recommended as a cornerstone of multimodal therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and the effects of nutrients may extend beyond provision of adequate energy uptake, targeting different mechanisms or metabolic pathways that are affected or deregulated by cachexia. The evidence to support this notion derived from nutritional intervention studies in experimental models of cancer cachexia is systematically discussed in this review. Moreover, experimental variables and readout parameters to determine skeletal muscle wasting and cachexia are methodologically evaluated to allow critical comparison of similar studies. Single- and multinutrient intervention studies including qualitative modulation of dietary protein, dietary fat, and supplementation with specific nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract muscle mass loss and its underlying mechanisms in experimental cancer cachexia. Numerous studies showed favorable effects on impaired protein turnover and related metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact on cancer-induced muscle wasting. The combination of high quality nutrients in a multitargeted, multinutrient approach appears specifically promising, preferentially as a multimodal intervention, although more studies investigating the optimal quantity and combination of nutrients are needed. During the review process, a wide variation in timing, duration, dosing, and route of supplementation, as well as a wide variation in animal models were observed. Better standardization in dietary design, and the development of experimental models that better recapitulate the etiology of human cachexia, will further facilitate successful translation of experimentally-based multinutrient, multimodal interventions into clinical practice.
Collapse
Affiliation(s)
- Wouter R P H van de Worp
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands.,Danone Nutricia Research, Utrecht, Netherlands
| | - Ramon C J Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
3
|
Samimi N, Sepehrimanesh M, Koohi-Hosseinabadi O, Homayounfar R, Mokhtari M, Farjam M. The Therapeutic Effect of Shark Liver Oil in a Rat Model of Acetic Acid-Induced Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2419230. [PMID: 33149751 PMCID: PMC7603576 DOI: 10.1155/2020/2419230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis (UC) is one of the most well-known types of inflammatory bowel disease that manifests as recurrent inflammation of rectum and colon. The goal of this study is to evaluate the protective effects of shark liver oil (SLO) on acetic acid-induced ulcerative colitis in rats. Eighty induced UC rats were randomly divided into ten equal groups and received the following treatments for seven days: 1 ml of normal saline rectally, 1 ml of gel base (carboxymethyl cellulose) rectally, 10 mg/kg of Asacol rectally, 10 mg/kg of mesalazine orally, 5% gel form of SLO rectally, 10% gel form of SLO rectally, 200 mg of SLO orally, and 400 mg of SLO orally. We examined the oxidative stress indices, histopathological features, and body weight changes, as well as the function of the liver and kidneys at the end of treatment. Administration of 10% rectal and 400 mg oral SLO resulted in a significant weight gain. Also, glutathione peroxidase activity was significantly higher in 5% and 10% SLO-treated groups, and elevated superoxide dismutase activity in rats that received 5% SLO was observed compared to negative control and Asacol groups. While no significant changes were observed in most of the kidney and liver function markers, higher levels of aspartate aminotransferase were detected in the group that received 400 mg SLO orally compared to negative control and Asacol groups. Many histopathological signs of improvement were observed in mesalazine, Asacol, and SLO groups. There were no significant changes detected in the mean rank among different groups. Our data indicate that SLO supplementation could improve the amelioration of acetic acid-induced UC in rats due to its antioxidant effects.
Collapse
Affiliation(s)
- Nastaran Samimi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Masood Sepehrimanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Homayounfar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Vázquez L, Corzo-Martínez M, Arranz-Martínez P, Barroso E, Reglero G, Torres C. Bioactive Lipids. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-78030-6_58] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Miyaguti NADS, de Oliveira SCP, Gomes-Marcondes MCC. Maternal nutritional supplementation with fish oil and/or leucine improves hepatic function and antioxidant defenses, and minimizes cachexia indexes in Walker-256 tumor-bearing rats offspring. Nutr Res 2018; 51:29-39. [DOI: 10.1016/j.nutres.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/30/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
6
|
Vicentini GE, Martins HA, Fracaro L, de Souza SRG, da Silva Zanoni KP, Silva TNX, Blegniski FP, Guarnier FA, Zanoni JN. Does l -glutamine-supplemented diet extenuate NO-mediated damage on myenteric plexus of Walker 256 tumor-bearing rats? Food Res Int 2017; 101:24-34. [DOI: 10.1016/j.foodres.2017.08.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 01/10/2023]
|
7
|
Schiessel DL, Yamazaki RK, Kryczyk M, Coelho de Castro I, Yamaguchi AA, Pequito DCT, Brito GAP, Borghetti G, Aikawa J, Nunes EA, Naliwaiko K, Fernandes LC. Does Oil Rich in Alpha-Linolenic Fatty Acid Cause the Same Immune Modulation as Fish Oil in Walker 256 Tumor-Bearing Rats? Nutr Cancer 2016; 68:1369-1380. [DOI: 10.1080/01635581.2016.1224364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Iagher F, de Brito Belo SR, Souza WM, Nunes JR, Naliwaiko K, Sassaki GL, Bonatto SJR, de Oliveira HHP, Brito GAP, de Lima C, Kryczyk M, de Souza CF, Steffani JA, Nunes EA, Fernandes LC. Antitumor and anti-cachectic effects of shark liver oil and fish oil: comparison between independent or associative chronic supplementation in Walker 256 tumor-bearing rats. Lipids Health Dis 2013; 12:146. [PMID: 24131597 PMCID: PMC4015826 DOI: 10.1186/1476-511x-12-146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/10/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Shark liver oil (SLOil) and fish oil (FOil), which are respectively rich in alkylglycerols (AKGs) and n-3 polyunsaturated fatty acids (PUFAs), are able to reduce the growth of some tumors and the burden of cachexia. It is known that FOil is able to reduce proliferation rate and increase apoptotic cells and lipid peroxidation of tumor cells efficiently. However, there are few reports revealing the influence of SLOil on these parameters. In the current study, effects of FOil chronic supplementation on tumor growth and cachexia were taken as reference to compare the results obtained with SLOil supplementation. Also, we evaluated if the association of SLOil and FOil was able to promote additive effects. METHODS Weanling male Wistar rats were divided into 4 groups: fed regular chow (C), supplemented (1 g/kg body weight) with SLOil (CSLO), FOil (CFO) and both (CSLO + FO). After 8 weeks half of each group was inoculated with Walker 256 cells originating new groups (W, WSLO, WFO and WSLO + FO). Biochemical parameters of cachexia, tumor weight, hydroperoxide content, proliferation rate and percentage of apoptotic tumor cells were analysed. Fatty acids and AKG composition of tumor and oils were obtained by high performance liquid chromatography and gas chromatography - mass spectrometry, respectively. Statistical analysis was performed by unpaired t-test and one-way ANOVA followed by a post hoc Tukey test. RESULTS Fourteen days after inoculation, SLOil was able to restore cachexia parameters to control levels, similarly to FOil. WSLO rats presented significantly lower tumor weight (40%), greater tumor cell apoptosis (~3-fold), decreased tumor cell proliferation (35%), and higher tumor content of lipid hydroperoxides (40%) than observed in W rats, but FOil showed more potent effects. Supplementation with SLOil + FOil did not promote additive effects. Additionally, chromatographic results suggested a potential incorporation competition between the n-3 fatty acids and the AKGs in the tumor cells' membranes. CONCLUSIONS SLOil is another marine source of lipids with similar FOil anti-cachectic capacity. Furthermore, despite being less potent than FOil, SLOil presented significant in vivo antitumor effects. These results suggest that the chronic supplementation with SLOil may be adjuvant of the anti-cancer therapy.
Collapse
Affiliation(s)
- Fabíola Iagher
- Area of Biological and Health Sciences, West University of Santa Catarina, Joaçaba, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Nuclear factor-kappaB (NF-κB) activation is associated with a wide range of muscle-related diseases. Here, we review the evidence implicating specific NF-κB components in different disease pathologies and discuss therapies designed to target aberrant NF-κB signaling for the treatment of those pathologies. RECENT FINDINGS Many components of the NF-κB signaling pathway contribute to muscle pathologies, presumably through activation of the transcription factor. In addition, an increasing number of upstream factors have been connected to disease progression. Genetic models and therapeutic approaches affecting these upstream targets associate with ameliorating disease progression. SUMMARY Dissecting the crosstalk between NF-κB, its upstream mediators, and other signaling pathways is vital to our understanding of how activation of this signaling pathway is mediated in various diseases. The strides made in therapeutically inhibiting the NF-κB pathway provide some promise for the treatment of these diseases.
Collapse
Affiliation(s)
- Jonathan Shintaku
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
10
|
Current World Literature. Curr Opin Support Palliat Care 2012; 6:543-52. [DOI: 10.1097/spc.0b013e32835ad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|