1
|
Bhardwaj P, Kumar M, Dhatwalia SK, Garg ML, Dhawan DK. Protective role of AKBA against benzo(a)pyrene-induced lung carcinogenesis by modulating biotransformation enzymes and oxidative stress. J Biochem Mol Toxicol 2022; 36:e23072. [PMID: 35437857 DOI: 10.1002/jbt.23072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
The present study was designed to explore the chemopreventive potential of 3-acetyl-11-keto-β-boswellic acid (AKBA) during the initiation and promotion stage of lung carcinogenesis induced by benzo(a)pyrene (BaP) in female Sprague Dawley rats. BaP was administered at a dose level of 50 mg/kg b.wt. twice a week orally in olive oil for 4 weeks. AKBA administration was started 4 weeks before BaP treatment and continued for another 8 weeks at a dose level of 50 mg/kg b.wt. orally in olive oil three times a week. BaP treatment showed significantly increased in the activities of Phase I biotransformation enzymes (Cytochrome P450 , b5 , and aryl hydrocarbon hydrolase) and inhibited the activity of Phase II enzyme (glutathione-S-transferase). Also, a significant elevation in oxidative stress biomarkers lipid peroxidation, reactive oxygen species, and protein carbonyl content concentration. Further, an appreciable decrease was observed in the activities of endogenous antioxidant enzymes superoxide dismutase, CAT, GPx, GR, and a decline in nonenzymatic GSH levels. As a result of BaP induced oxidative stress, alteration in erythrocytes morphology was observed. Fourier transform infrared spectroscopy spectrum of lung tissue showed structural changes due to BaP exposure. Moreover, levels of tumor biomarkers such as total sialic acid, carcinoembryonic antigen, and alkaline phosphatase were significantly elevated following BaP treatment which was substantiated by alterations noticed in the histoarchitecture of lung tissue. Interestingly, AKBA administration to BaP treated rats appreciably alleviated the changes inflicted by BaP on various biochemical indices and histoarchitecture of lungs. Therefore, the study clearly revealed that AKBA by containing oxidative stress shall prove to be quite effective in providing chemoprevention against BaP induced lung carcinogenesis.
Collapse
Affiliation(s)
- Priti Bhardwaj
- Department of Biophysics, Panjab University, Chandigarh, India.,Electron microscopy facility, National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Manoj Kumar
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Higher Education Shimla, Govt. College Chowari, Shimla, Himachal Pradesh, India
| | - Sunil Kumar Dhatwalia
- Department of Biophysics, Panjab University, Chandigarh, India.,Department of Zoology and Environmental Sciences, Maharaja Agarsen University, Baddi Solan, Himachal Pradesh, India
| | - Mohan Lal Garg
- Department of Biophysics, Panjab University, Chandigarh, India
| | | |
Collapse
|
2
|
A. Attia M, Enan ET, Hashish AA, M. H. El-kannishy S, Gardouh AR, K. Tawfik M, Faisal S, El-Mistekawy A, Salama A, Alomar SY, H. Eltrawy A, Yagub Aloyouni S, Zaitone SA. Chemopreventive Effect of 5-Flurouracil Polymeric Hybrid PLGA-Lecithin Nanoparticles against Colon Dysplasia Model in Mice and Impact on p53 Apoptosis. Biomolecules 2021; 11:biom11010109. [PMID: 33467560 PMCID: PMC7830948 DOI: 10.3390/biom11010109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The use of 5-fluorouracil (5FU) is associated with multifaceted challenges and poor pharmacokinetics. Poly(lactic-co-glycolic acid)-lipid hybrid nanoparticles (PLNs)-based therapy has received attention as efficient carriers for a diversity of drugs. This study evaluated the in vivo chemotherapeutic and anti-proliferative efficacy of 5FU-loaded PLNs against 1,2-dimethylhydrazine (Di-MH) prompted colon dysplasia in mice compared to free 5FU. 5FU PLNs were prepared. Male Swiss albino mice were distributed to six experimental groups. Group 1: Saline group. All the other groups were injected weekly with Di-MH [20 mg/kg, s.c.]. Group 2: Di-MH induced colon dysplasia control group. Groups 3 and 4: Di-MH + free 5FU treated group [2.5 and 5 mg/kg]. Groups 5 and 6: Di-MH + 5FU-PLNs treated group [2.5 and 5 mg/kg]. Free 5FU and 5FU-PLNs doses were administered orally, twice weekly. Treatment with 5FU-PLNs induced a higher cytoprotective effect compared to free 5FU as indicated by lower mucosal histopathologic score and reduction in number of Ki-67 immunpositive proliferating nuclei. Additionally, there was significant upregulation of p53 and caspase 3 genes in colon specimens. Our results support the validity of utilizing the PLNs technique to improve the chemopreventive action of 5FU in treating colon cancer.
Collapse
Affiliation(s)
- Mohammed A. Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmacology, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Eman T. Enan
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Abdullah A. Hashish
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Sherif M. H. El-kannishy
- Department of Toxicology, Mansoura Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ahmed R. Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
- Department of Pharmacy, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Mona K. Tawfik
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (M.K.T.); (S.Y.A.); or (S.A.Z.); Tel.: +20-12-2271-9473 (M.K.T.); +966-05-0076-7717 (S.Y.A.); +20-10-6891-6396 (S.A.Z.)
| | - Salwa Faisal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Amr El-Mistekawy
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11751, Egypt
| | - Suliman Y. Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
- Correspondence: or (M.K.T.); (S.Y.A.); or (S.A.Z.); Tel.: +20-12-2271-9473 (M.K.T.); +966-05-0076-7717 (S.Y.A.); +20-10-6891-6396 (S.A.Z.)
| | - Amira H. Eltrawy
- Department of Anatomy and Embryology, Faculty of Medicine, Alexandria University, Alexandria 22785, Egypt;
| | - Sheka Yagub Aloyouni
- Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: or (M.K.T.); (S.Y.A.); or (S.A.Z.); Tel.: +20-12-2271-9473 (M.K.T.); +966-05-0076-7717 (S.Y.A.); +20-10-6891-6396 (S.A.Z.)
| |
Collapse
|
3
|
Venkatachalam K, Vinayagam R, Arokia Vijaya Anand M, Isa NM, Ponnaiyan R. Biochemical and molecular aspects of 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis: a review. Toxicol Res (Camb) 2020; 9:2-18. [PMID: 32440334 DOI: 10.1093/toxres/tfaa004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
1,2-dimethylhydrazine (DMH) is a member in the class of hydrazines, strong DNA alkylating agent, naturally present in cycads. DMH is widely used as a carcinogen to induce colon cancer in animal models. Exploration of DMH-induced colon carcinogenesis in rodent models provides the knowledge to perceive the biochemical, molecular, and histological mechanisms of different stages of colon carcinogenesis. The procarcinogen DMH, after a series of metabolic reactions, finally reaches the colon, there produces the ultimate carcinogen and reactive oxygen species (ROS), which further alkylate the DNA and initiate the development of colon carcinogenesis. The preneolpastic lesions and histopathological observations of DMH-induced colon tumors may provide typical understanding about the disease in rodents and humans. In addition, this review discusses about the action of biotransformation and antioxidant enzymes involved in DMH intoxication. This understanding is essential to accurately identify and interpret alterations that occur in the colonic mucosa when evaluating natural or pharmacological compounds in DMH-induced animal colon carcinogenesis.
Collapse
Affiliation(s)
- Karthikkumar Venkatachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain-17666, United Arab Emirates
| | - Ramachandran Vinayagam
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamilnadu 632 115, India
| | | | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 Seri Kembangan, Selangor, Malaysia
| | - Rajasekar Ponnaiyan
- Department of Zoology, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu 620020, India
| |
Collapse
|
4
|
Jain K, Dhawan DK. Regulation of Biokinetics of 65Zn by Curcumin and Zinc in Experimentally Induced Colon Carcinogenesis in Rats. Cancer Biother Radiopharm 2014; 29:310-6. [DOI: 10.1089/cbr.2014.1670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kinnri Jain
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| | - Devinder K. Dhawan
- Centre for Nuclear Medicine, University Institute of Emerging Areas in Science and Technology (UIEAST), Panjab University, Chandigarh, India
| |
Collapse
|