1
|
Sharifi-Azad M, Kaveh Zenjanab M, Shahpouri M, Adili-Aghdam MA, Fathi M, Jahanban-Esfahlan R. Codelivery of methotrexate and silibinin by niosome nanoparticles for enhanced chemotherapy of CT26 colon cancer cells. Biomed Mater 2024; 19:055015. [PMID: 38953496 DOI: 10.1088/1748-605x/ad5d9b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Colon cancer (CC) is one of the most prevalent cancers in the world, and chemotherapy is widely applied to combat it. However, chemotherapy drugs have severe side effects and emergence of multi drug resistance (MDR) is common. This bottleneck can be overcome by niosome nanocarriers that minimize drug dose/toxicity meanwhile allow co-loading of incompatible drugs for combination therapy. In this research, silibinin (Sil) as a hydrophobic drug was loaded into the lipophilic part, and methotrexate (MTX) into the hydrophilic part of niosome by the thin film hydration (TFH) method to form Nio@MS NPs for CT26 colon cancer therapyin vitro. Our results indicated synthesis of ideal niosome nanoparticles (NPs) with spherical morphology, size of ∼100 nm, and a zeta potential of -10 mV. The IC50value for Nio@MS was determined ∼2.6 µg ml-1, which was significantly lower than MTX-Sil (∼6.86 µg ml-1), Sil (18.46 µg ml-1), and MTX (9.8 µg ml-1). Further, Nio@MS significantly reduced cell adhesion density, promoted apoptosis and increased gene expression level of caspase 3 and BAX while promoted significant downregulation of BCL2. In conclusion, the design and application of niosome to co-administer Sil and MTX can increase the drugs cytotoxicity, reduce their dose and improve anti-cancer potential by combating MDR.
Collapse
Affiliation(s)
- Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kaveh Zenjanab
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahpouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amin Adili-Aghdam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Saikia L, Gogoi B, Sen S, Tonk RK, Kumar D, Dutta PP. The recent update and advancements of natural products in targeting the Wnt/β-Catenin pathway for cancer prevention and therapeutics. Med Oncol 2024; 41:164. [PMID: 38816663 DOI: 10.1007/s12032-024-02387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 06/01/2024]
Abstract
The Wnt/β-Catenin pathway (Wnt/β-CatP) is implicated in accelerating carcinogenesis and cancer progression, contributing to increased morbidity and treatment resistance. Even though it holds promise as a focus for cancer treatment, its intricate nature and diverse physiological effects pose significant challenges. Recent years have witnessed significant advancements in this domain, with numerous natural products demonstrating promising preclinical anti-tumor effects and identified as inhibitors of the Wnt/β-CatP through various upstream and downstream mechanisms. This study provides a comprehensive overview of the current landscape of Wnt/β-Cat-targeted cancer therapy, examining the impact of natural products on Wnt/β-Cat signaling in both cancer prevention and therapeutic contexts. A comprehensive search was conducted on scientific databases like SciFinder, PubMed, and Google Scholar to retrieve relevant literature on Wnt-signaling, natural products, β-Catenin (β-Cat), and cancer from 2020 to January 2024. As per the analysis of the relevant reference within the specified period, it has been noted that a total of 58 phytoconstituents, predominantly phenolics, followed by triterpenoids and several other classes, along with a limited number of plant extracts, have exhibited activity targeting the Wnt/β-CatP. Most β-Cat regulating modulators restrict cancer cell development by suppressing β-Cat expression, facilitating proteasomal degradation, and inhibiting nuclear translocation. Multiple approaches have been devised to block the activity of β-Cat in cancer therapy, a key factor in cancer progression, leading to the discovery of various Wnt/β-CatP regulators. However, their exploration remains limited, necessitating further research using clinical models for potential clinical use in cancer prevention and therapeutics.
Collapse
Affiliation(s)
- Lunasmrita Saikia
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, 781026, India
| | - Bhaskarjyoti Gogoi
- Department of Biotechnology, The Assam Royal Global University, Guwahati, Assam, 781035, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, 781026, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Partha Pratim Dutta
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, 781026, India.
| |
Collapse
|
3
|
Zhang X, Zhou W, Wu C, Jiang J, Guo Q, Feng L, Cheng X, Zhang X. Cetuximab inhibits colorectal cancer development through inactivating the Wnt/β-catenin pathway and modulating PLCB3 expression. Sci Rep 2024; 14:10642. [PMID: 38724565 PMCID: PMC11081956 DOI: 10.1038/s41598-024-59676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 04/13/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) often necessitates cetuximab (an EGFR-targeting monoclonal antibody) for treatment. Despite its clinical utility, the specific operative mechanism of cetuximab remains elusive. This research investigated the influence of PLCB3, a potential CRC oncogene, on cetuximab treatment. We extracted differentially expressed genes from the GSE140973, the overlapping genes combined with 151 Wnt/β-Catenin signaling pathway-related genes were identified. Then, we conducted bioinformatics analysis to pinpoint the hub gene. Subsequently, we investigated the clinical expression characteristics of this hub gene, through cell experimental, scrutinized the impact of cetuximab and PLCB3 on CRC cellular progression. The study identified 26 overlapping genes. High expression of PLCB3, correlated with poorer prognosis. PLCB3 emerged as a significant oncogene associated with patient prognosis. In vitro tests revealed that cetuximab exerted a cytotoxic effect on CRC cells, with PLCB3 knockdown inhibiting CRC cell progression. Furthermore, cetuximab treatment led to a reduction in both β-catenin and PLCB3 expression, while simultaneously augmenting E-cadherin expression. These findings revealed PLCB3 promoted cetuximab inhibition on Wnt/β-catenin signaling. Finally, simultaneous application of cetuximab with a Wnt activator (IM12) and PLCB3 demonstrated inhibited CRC proliferation, migration, and invasion. The study emphasized the pivotal role of PLCB3 in CRC and its potential to enhance the efficacy of cetuximab treatment. Furthermore, cetuximab suppressed Wnt/β-catenin pathway to modulate PLCB3 expression, thus inhibiting colorectal cancer progression. This study offered fresh perspectives on cetuximab mechanism in CRC.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Fengxian District Center Hospital Graduate Student Training Base, Jinzhou Medical University, No. 6600 Nanfeng Road, Shanghai, 201499, China
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201199, China
| | - Wenming Zhou
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201199, China
| | - Chenqu Wu
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201199, China
| | - Jun Jiang
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201199, China
| | - Qianqian Guo
- Fengxian District Center Hospital Graduate Student Training Base, Jinzhou Medical University, No. 6600 Nanfeng Road, Shanghai, 201499, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201199, China.
| | - Xun Cheng
- Endoscopy Center, Minhang Hospital, Fudan University, No. 170 Xinsong Road, Shanghai, 201199, China.
| | - Xingxing Zhang
- Fengxian District Center Hospital Graduate Student Training Base, Jinzhou Medical University, No. 6600 Nanfeng Road, Shanghai, 201499, China.
- Department of Gastroenterology, Shanghai Jiaotong University Affiliated Sixth People Hospital South Campus, No. 6600 Nanfeng Road, Shanghai, 201499, China.
| |
Collapse
|
4
|
Lotia S, Patel S, Patel A, Patel V, Shah K, Tanavde V. Unravelling the role of Silibinin in targeting CD44+ cancer stem cells: Therapeutic implications, effective strategies and approaches. Phytother Res 2024; 38:1830-1837. [PMID: 38353369 DOI: 10.1002/ptr.8150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/10/2024]
Abstract
CD44+ cancer stem cells (CSCs) are believed to account for drug resistance and tumour recurrence due to their potential to self-renew and differentiate into heterogeneous lineages. Therefore, efficient treatment strategies targeting and eliminating these CSCs are required. The flavonolignan, Silibinin, has gained immense attention in targeting CD44+ CSCs as it alters functional properties like cell cycle arrest, apoptosis, inhibition of invasion and metastasis and also inhibits a range of molecular pathways. However, its limited bioavailability is a major hurdle in asserting Silibinin as a translational therapeutic agent. Combinatorial therapy of Silibinin with conventional chemotherapeutic drugs is an alternative approach in targeting CD44+ CSCs as it increases the efficacy and reduces the cytotoxicity of chemotherapeutic drugs, thus preventing drug resistance. Certain Silibinin-conjugated nano-formulations have also been successfully developed, through which there is improved absorptivity/bioavailability of Silibinin and a decrease in the concentration of therapeutic drugs leading to reduced cytotoxicity. In this review, we summarise the effectiveness of the synergistic therapeutic approach for Silibinin in targeting the molecular mechanisms of CD44+ CSCs and emphasise the potential role of Silibinin as a novel therapeutic agent.
Collapse
Affiliation(s)
- Shreya Lotia
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Shanaya Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Aditi Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Vaishnavi Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Kanisha Shah
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Vivek Tanavde
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
- Bioinformatics Institute, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
5
|
Gupta J, Jalil AT, Riyad Muedii ZAH, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. The Radiosensitizing Potentials of Silymarin/Silibinin in Cancer: A Systematic Review. Curr Med Chem 2024; 31:6992-7014. [PMID: 37921180 DOI: 10.2174/0109298673248404231006052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Although radiotherapy is one of the main cancer treatment modalities, exposing healthy organs/tissues to ionizing radiation during treatment and tumor resistance to ionizing radiation are the chief challenges of radiotherapy that can lead to different adverse effects. It was shown that the combined treatment of radiotherapy and natural bioactive compounds (such as silymarin/silibinin) can alleviate the ionizing radiation-induced adverse side effects and induce synergies between these therapeutic modalities. In the present review, the potential radiosensitization effects of silymarin/silibinin during cancer radiation exposure/radiotherapy were studied. METHODS According to the PRISMA guideline, a systematic search was performed for the identification of relevant studies in different electronic databases of Google Scholar, PubMed, Web of Science, and Scopus up to October 2022. We screened 843 articles in accordance with a predefined set of inclusion and exclusion criteria. Seven studies were finally included in this systematic review. RESULTS Compared to the control group, the cell survival/proliferation of cancer cells treated with ionizing radiation was considerably less, and silymarin/silibinin administration synergistically increased ionizing radiation-induced cytotoxicity. Furthermore, there was a decrease in the tumor volume, weight, and growth of ionizing radiation-treated mice as compared to the untreated groups, and these diminutions were predominant in those treated with radiotherapy plus silymarin/ silibinin. Furthermore, the irradiation led to a set of biochemical and histopathological changes in tumoral cells/tissues, and the ionizing radiation-induced alterations were synergized following silymarin/silibinin administration (in most cases). CONCLUSION In most cases, silymarin/silibinin administration could sensitize the cancer cells to ionizing radiation through an increase of free radical formation, induction of DNA damage, increase of apoptosis, inhibition of angiogenesis and metastasis, etc. However, suggesting the use of silymarin/silibinin during radiotherapeutic treatment of cancer patients requires further clinical studies.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Psychometry and Ethology Laboratory, Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellin, Colombia
- Educational Statistics Research Group (GIEE), National University of Education, Cuenca, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Koushki M, Farrokhi Yekta R, Amiri-Dashatan N. Critical review of therapeutic potential of silymarin in cancer: A bioactive polyphenolic flavonoid. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
8
|
Nan Y, Su H, Zhou B, Liu S. The function of natural compounds in important anticancer mechanisms. Front Oncol 2023; 12:1049888. [PMID: 36686745 PMCID: PMC9846506 DOI: 10.3389/fonc.2022.1049888] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
The existence of malignant tumors has been a threat to human life, health, and safety. Although the rapid development of radiotherapy, drug therapy, surgery, and local therapy has improved the quality of life of tumor patients, there are still some risks. Natural compounds are widely used in cancer because they are easy to obtain, have a good curative effects and have no obvious side effects, and play a vital role in the prevention and treatment of various cancers. Phenolic, flavonoids, terpenoids, alkaloids, and other natural components of traditional Chinese medicine have certain anti-tumor activities, which can promote apoptosis, anti-proliferation, anti-metastasis, inhibit angiogenesis, change the morphology of cancer cells and regulate immune function, etc., and have positive effects on breast cancer, liver cancer, lung cancer, gastric cancer, rectal cancer and so on. To better understand the effects of natural compounds on cancer, this paper screened out four important pathways closely related to cancer, including cell death and immunogenic cell death, immune cells in the tumor microenvironment, inflammation and related pathways and tumor metastasis, and systematically elaborated the effects of natural compounds on cancer.
Collapse
Affiliation(s)
- Yang Nan
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Hongchan Su
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Bo Zhou
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China
| | - Shumin Liu
- Chinese Medicine Research Institute, Heilongjiang University of Chinese Medicine, Heilongjiang, Haerbin, China,*Correspondence: Shumin Liu,
| |
Collapse
|
9
|
Liao W, Zhang L, Chen X, Xiang J, Zheng Q, Chen N, Zhao M, Zhang G, Xiao X, Zhou G, Zeng J, Tang J. Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154524. [PMID: 36375238 DOI: 10.1016/j.phymed.2022.154524] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cancer stem cells (CSCs) are strongly associated with high tumourigenicity, chemotherapy or radiotherapy resistance, and metastasis and recurrence, particularly in colorectal cancer (CRC). Therefore, targeting CSCs may be a promising approach. Recently, discovery and research on phytochemicals that effectively target colorectal CSCs have been gaining popularity because of their broad safety profile and multi-target and multi-pathway modes of action. PURPOSE This review aimed to elucidate and summarise the effects and mechanisms of phytochemicals with potential anti-CSC agents that could contribute to the better management of CRC. METHODS We reviewed PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases from the original publication date to March 2022 to review the mechanisms by which phytochemicals inhibit CRC progression by targeting CSCs and their key signalling pathways. Phytochemicals were classified and summarised based on the mechanisms of action. RESULTS We observed that phytochemicals could affect the biological properties of colorectal CSCs. Phytochemicals significantly inhibit self-renewal, migration, invasion, colony formation, and chemoresistance and induce apoptosis and differentiation of CSCs by regulating the Wnt/β-catenin pathway (e.g., diallyl trisulfide and genistein), the phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin pathway (e.g., caffeic acid and piperlongumine), the neurogenic locus notch homolog protein pathway (e.g., honokiol, quercetin, and α-mangostin), the Janus kinase-signal transducer and activator of transcription pathway (e.g., curcumin, morin, and ursolic acid), and other key signalling pathways. It is worth noting that several phytochemicals, such as resveratrol, silibinin, evodiamine, and thymoquinone, highlight multi-target and multi-pathway effects in restraining the malignant biological behaviour of CSCs. CONCLUSIONS This review demonstrates the potential of targeted therapies for colorectal CSCs using phytochemicals. Phytochemicals could serve as novel therapeutic agents for CRC and aid in drug development.
Collapse
Affiliation(s)
- Wenhao Liao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Lanlan Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian Chen
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Juyi Xiang
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China
| | - Qiao Zheng
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Nianzhi Chen
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Maoyuan Zhao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xiaolin Xiao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Gang Zhou
- Center for drug evaluation, National Medical Products Administration, Beijing 100022, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
10
|
Effect of histone deacetylase 8 gene deletion on breast cancer cellular mechanism in vitro and in vivo study. Life Sci 2022; 311:121156. [DOI: 10.1016/j.lfs.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
11
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
12
|
Chhetri D, Vengadassalapathy S, Venkadassalapathy S, Balachandran V, Umapathy VR, Veeraraghavan VP, Jayaraman S, Patil S, Iyaswamy A, Palaniyandi K, Gnanasampanthapandian D. Pleiotropic effects of DCLK1 in cancer and cancer stem cells. Front Mol Biosci 2022; 9:965730. [PMID: 36250024 PMCID: PMC9560780 DOI: 10.3389/fmolb.2022.965730] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Doublecortin-like kinase 1 (DCLK1), a protein molecule, has been identified as a tumor stem cell marker in the cancer cells of gastrointestinal, pancreas, and human colon. DCLK1 expression in cancers, such as breast carcinoma, lung carcinoma, hepatic cell carcinoma, tuft cells, and human cholangiocarcinoma, has shown a way to target the DCLK1 gene and downregulate its expression. Several studies have discussed the inhibition of tumor cell proliferation along with neoplastic cell arrest when the DCLK1 gene, which is expressed in both cancer and normal cells, was targeted successfully. In addition, previous studies have shown that DCLK1 plays a vital role in various cancer metastases. The correlation of DCLK1 with numerous stem cell receptors, signaling pathways, and genes suggests its direct or an indirect role in promoting tumorigenesis. Moreover, the impact of DCLK1 was found to be related to the functioning of an oncogene. The downregulation of DCLK1 expression by using targeted strategies, such as embracing the use of siRNA, miRNA, CRISPR/Cas9 technology, nanomolecules, specific monoclonal antibodies, and silencing the pathways regulated by DCLK1, has shown promising results in both in vitro and in vivo studies on gastrointestinal (GI) cancers. In this review, we will discuss about the present understanding of DCLK1 and its role in the progression of GI cancer and metastasis.
Collapse
Affiliation(s)
- Dibyashree Chhetri
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | | - Varadharaju Balachandran
- Department of Physiology, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| | - Ashok Iyaswamy
- Centre for Parkinsons Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
- *Correspondence: Kanagaraj Palaniyandi, ; Dhanavathy Gnanasampanthapandian,
| |
Collapse
|
13
|
Silibinin suppresses TGFβ2-induced lens epithelial cell migration and epithelial–mesenchymal transition. J Biosci 2022. [DOI: 10.1007/s12038-022-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Li Z, Yang D, Guo T, Lin M. Advances in MUC1-Mediated Breast Cancer Immunotherapy. Biomolecules 2022; 12:biom12070952. [PMID: 35883508 PMCID: PMC9313386 DOI: 10.3390/biom12070952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Breast cancer (BRCA) is the leading cause of death from malignant tumors among women. Fortunately, however, immunotherapy has recently become a prospective BRCA treatment with encouraging achievements and mild safety profiles. Since the overexpression and aberrant glycosylation of MUC1 (human mucin) are closely associated with BRCA, it has become an ideal target for BRCA immunotherapies. In this review, the structure and function of MUC1 are briefly introduced, and the main research achievements in different kinds of MUC1-mediated BRCA immunotherapy are highlighted, from the laboratory to the clinic. Afterward, the future directions of MUC1-mediated BRCA immunotherapy are predicted, addressing, for example, urgent issues in regard to how efficient immunotherapeutic strategies can be generated.
Collapse
Affiliation(s)
- Zhifeng Li
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Dazhuang Yang
- Medical School of Nantong University, Nantong 226019, China; (Z.L.); (D.Y.)
| | - Ting Guo
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
| | - Mei Lin
- Research Center of Clinical Medicine, Jiangsu Taizhou People’s Hospital (Affiliated Hospital 5 of Nantong University), Taizhou 225300, China;
- Correspondence:
| |
Collapse
|
15
|
Estrogen Receptors in Colorectal Cancer: Facts, Novelties and Perspectives. Curr Oncol 2021; 28:4256-4263. [PMID: 34898546 PMCID: PMC8544350 DOI: 10.3390/curroncol28060361] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer-related death in both sexes worldwide. As pre-menopausal women are less likely to develop CRC compared to age-matched men, a protective role for estrogens has been hypothesized. Indeed, two isoforms of nuclear estrogen receptors (ER) have been described: ERα and ERβ. While the binding of 17beta-estradiol to ERα activates anti-apoptotic pathways, the interaction with ERβ activates caspase-3, inducing apoptosis. In this regard, several pieces of evidence show that ERβ tends to be under-regulated in advanced adenomas and CRC, with an opposite trend for ERα. Furthermore, ERβ stimulation slows adenomatous polyp growth and modulates relevant CRC pathways. Based on such considerations, dietary modulation of ER is promising, particularly in subjects with genetic predisposition for CRC. Nevertheless, the main limitation is the lack of clinical trials on a large population scale.
Collapse
|
16
|
Sompel K, Elango A, Smith AJ, Tennis MA. Cancer chemoprevention through Frizzled receptors and EMT. Discov Oncol 2021; 12:32. [PMID: 34604862 PMCID: PMC8429367 DOI: 10.1007/s12672-021-00429-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Frizzled (FZD) transmembrane receptors are well known for their role in β-catenin signaling and development and now understanding of their role in the context of cancer is growing. FZDs are often associated with the process of epithelial to mesenchymal transition (EMT) through β-catenin, but some also influence EMT through non-canonical pathways. With ten different FZDs, there is a wide range of activity from oncogenic to tumor suppressive depending on the tissue context. Alterations in FZD signaling can occur during development of premalignant lesions, supporting their potential as targets of chemoprevention agents. Agonizing or antagonizing FZD activity may affect EMT, which is a key process in lesion progression often targeted by chemoprevention agents. Recent studies identified a specific FZD as important for activity of an EMT inhibiting chemopreventive agent and other studies have highlighted the previously unrecognized potential for targeting small molecules to FZD receptors. This work demonstrates the value of investigating FZDs in chemoprevention and here we provide a review of FZDs in cancer EMT and their potential as chemoprevention targets.
Collapse
Affiliation(s)
- K. Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. Elango
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - A. J. Smith
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| | - M. A. Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E 19th AVE, RC2 Box C272, Aurora, CO 80045 USA
| |
Collapse
|
17
|
Koushki M, Khedri A, Aberomand M, Akbari Baghbani K, Mohammadzadeh G. Synergistic anti-cancer effects of silibinin-etoposide combination against human breast carcinoma MCF-7 and MDA-MB-231 cell lines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1211-1219. [PMID: 35083008 PMCID: PMC8751753 DOI: 10.22038/ijbms.2021.56341.12575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Recently, there is a significant focus on combination chemotherapy for cancer using a cytotoxic drug and a phytochemical compound. We investigated the effect of silibinin on etoposide-induced apoptosis in MCF-7 and MDA-MB-231 breast carcinoma cell lines. MATERIALS AND METHODS The cytotoxic effects of silibinin and etoposide were determined using MTT assay after 24 and 48 hr incubation with these drugs individually and combined. The mRNA expression of Bax and Bcl2, and protein levels of P53, phosphorylated p53 (P-P53), and P21 were determined using real-time PCR and western blot analysis, respectively. The caspase 9 activity was measured using an ELISA kit. RESULTS Silibinin and etoposide alone and combined significantly inhibit cell growth in a dose and time-dependent manner in both cell lines. The strongest synergistic effects in terms of MCF-7 cell growth inhibition [combination index (CI) = 0.066] were evident. The silibinin-etoposide combinations cause a much powerful apoptotic death (47% and 40%) compared with each compound individually in MCF-7 and MDA-MB 231 cells, respectively. Additionally, the silibinin-etoposide combinations significantly increased the expression of P53, P-P53, and P21 in MCF-7 cells. Neither silibinin nor etoposide individually increased the level of P53 and P-P53 in MDA-MB-231 cells, but both of them individually and combined increased the level of P21. CONCLUSION Since the silibinin-etoposide combination induces apoptosis in both cell lines with and without expression of p53, thus, it is suggested that this combination may be a successful therapeutic strategy for breast cancer regardless of P53 status.
Collapse
Affiliation(s)
- Mahdie Koushki
- Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Department of Clinical Biochemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Aberomand
- Toxicology Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ghorban Mohammadzadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
18
|
Winarko W, Rahayu P, Soeatmadji D, Mintaroem K. Differences in the Expression of β-Catenin Nucleus/Cytoplasm Ratio e-Cadherin and n-Cadherin and Correlation of β-Catenin Cytoplasm and Cadherin in Model of Duke D Stage Colorectal Cancer Cell Line. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: β-catenin has a critical role in the homeostasis processes. Wnt/β-catenin signaling mainly involved in the modulation of cancer cell development.
AIM: This research aimed to investigate the differences of β-catenin expression observed in the form of nucleus–cytoplasm ratio, the differences of E-cadherin and N-cadherin expressions, and the correlation between N-cadherin and E-cadherin and β-catenin cytoplasm in Dukes D stage colorectal cancer (CRC), which is an advanced stage and has experienced metastasis.
MATERIALS AND METHODS: This study followed an experimental research design. The processes of culture manufacturing and subculture preparation of Dukes D stage CRC cell line model were performed before the administration of β-catenin, E-cadherin, and N-cadherin antibodies. The next process was staining using fluorescein-5-isothiocyanate and rhodamine, and observations were performed using a confocal microscope. The number of cells was counted, and the intensity of antibody expression based on the arbitrary unit was measured.
RESULTS: There was a significant difference between the expression of β-catenin nucleus and cytoplasm expression (p = 0.00), as well as between E-cadherin expression and N-cadherin expression (p = 0.00). In addition, a correlation also existed between an increased N-cadherin expression and decreased E-cadherin expression and β-catenin cytoplasm in Dukes D stage CRC, but the results were not significant (p = 0.837 and p = 0.108).
CONCLUSION: In advanced-stage CRC (Dukes D), the Wnt signaling proved to be active and was characterized by a high expression of β-catenin nucleus, it activates the target gene. Similarly, at the Dukes D stage, N-cadherin expression increased whereas E-cadherin expression decreased in which causing the translocation of β-catenin into the nucleus.
Collapse
|
19
|
Ali SA, Saifi MA, Godugu C, Talla V. Silibinin alleviates silica-induced pulmonary fibrosis: Potential role in modulating inflammation and epithelial-mesenchymal transition. Phytother Res 2021; 35:5290-5304. [PMID: 34250649 DOI: 10.1002/ptr.7210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
Pulmonary fibrosis (PF) is a devastating interstitial lung disease resulting from indefinite causes with very few limited, those too ineffective therapeutic options. Earlier evidence reported inflammation and epithelial-mesenchymal transition (EMT) are the major threats in PF. The present study was aimed to examine the anti-fibrotic activity of silibinin (SB) in PF. PF was induced by administering oropharyngeal 1.5 mg/mice silica on day 1, followed by treatment with and without oral SB for 14 days. Lung injury was assessed by x-ray analysis on day 14 and all the animals were sacrificed on day 15. The results showed that silica remarkably altered the histoarchitecture and induced the expression of inflammatory components in BALF and pulmonary tissue. Immunoblotting investigation quantified the expression of TGF-β, p-smad2/3, collagen-I, fibronectin, and α-SMA in the pulmonary tissue. To this end, treatment with SB alleviated inflammatory components, including IL-1β, IL-6, and TNF-α in the fibrotic tissue. Moreover, SB harnessed the tissue architecture, improved diffusive scattering of x-ray signals, and modulated epithelial-mesenchymal phenotypic alterations, including TGF-β, p-smad2/3, and collagen-I. Altogether, the significant reduction of inflammatory signaling, collagen deposition, and epithelial-mesenchymal transdifferentiation by SB suggested that it could be used as a potential therapeutic candidate to treat pulmonary inflammation and fibrosis.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India.,Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| | - Venu Talla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-(NIPER), Hyderabad, India
| |
Collapse
|
20
|
Sameri S, Mohammadi C, Mehrabani M, Najafi R. Targeting the hallmarks of cancer: the effects of silibinin on proliferation, cell death, angiogenesis, and migration in colorectal cancer. BMC Complement Med Ther 2021; 21:160. [PMID: 34059044 PMCID: PMC8168007 DOI: 10.1186/s12906-021-03330-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Background Silibinin, as a chemopreventive agent, has shown anti-cancer efficacy against different types of cancers. In the present study, we investigated the anti-cancer activities of silibinin on CT26 mouse colon cell line. Methods CT26 cells were treated with different concentrations of silibinin. To examine the cytotoxic effect of silibinin on proliferation, apoptosis, autophagy, angiogenesis, and migration, MTT, colony-forming assay, Annexin V/PI flow cytometry, RT-qPCR, and Scratch assay were used. Results Silibinin was found to significantly reduce CT26 cells survival. Furthermore, silibinin strongly induced apoptosis and autophagy by up-regulating the expression of Bax, Caspase-3, Atg5, Atg7 and BECN1 and down-regulating Bcl-2. Silibinin considerably down-regulated the expression of COX-2, HIF-1α, VEGF, Ang-2, and Ang-4 as well as the expression of MMP-2, MMP-9, CCR-2 and CXCR-4. Conclusions The present study revealed that silibinin shows anticancer activities by targeting proliferation, cell survival, angiogenesis, and migration of CT26 cells.
Collapse
Affiliation(s)
- Saba Sameri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
21
|
Pourjafar M, Samadi P, Saidijam M. MUC1 antibody-based therapeutics: the promise of cancer immunotherapy. Immunotherapy 2020; 12:1269-1286. [PMID: 33019839 DOI: 10.2217/imt-2020-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antibody-based targeted therapies have been able to target cancers with enhanced specificity and high efficacy. In this regard, identifying cancer markers (antigens) that are only present (tumor-specific antigens) or have an increased expression (tumor-associated antigen) on the surface of cancer cells is a crucial step for targeted cancer treatment. Various cancer antigens have already been used for therapeutic and diagnostic purposes. MUC1 is one of the most important tumor markers with high levels of expression in various solid tumors which makes it as a potential target for antibody-based therapies. This review discusses preclinical and clinical results from various platforms based on monoclonal antibodies, nanobodies as well as bispecific antibodies against MUC1. We also highlight unmet challenges that must be overcome to generate more effective cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Mona Pourjafar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pouria Samadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|