1
|
Moyers-Montoya ED, Castañeda-Muñoz MJ, Márquez-Olivas D, Miranda-Ruvalcaba R, Martínez-Pérez CA, García-Casillas PE, Montejo-López W, Nicolás-Vázquez MI, Escobedo-González RG. Theoretical-Cheminformatic Study of Four Indolylphytoquinones, Prospective Anticancer Candidates. Pharmaceuticals (Basel) 2024; 17:1595. [PMID: 39770437 PMCID: PMC11679286 DOI: 10.3390/ph17121595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Breast cancer is a disease with a high mortality rate worldwide; consequently, urgent achievements are required to design new greener drugs, leaving natural products and their derivatives as good options. A constant antineoplastic effect has been observed when the phytoproduct contains an indole fragment. Methods: Therefore, the objective of this work was to carry out a thoughtful computational study to perform an appropriate evaluation of four novel molecules of the class of the 3-indolylquinones as phytodrug candidates for antineoplastic activity: thymoquinone (TQ), 2,6-dimethoxy-1,4-benzoquinone (DMQ), 2,3-dimethoxy-5-methyl-1,4-benzoquinone (DMMQ), and 2,5-dihydroxy-1,4-benzoquinone (DHQ). It is important to highlight that the obtained computational results of the target compounds were compared-correlated with the theoretical and experimental literature data previously reported of several indolylquinones: indolylperezone, indolylisoperezone, indolylmenadione, and indolylplumbagin (IE-IH, respectively). Results: The results revealed that the studied structures possibly presented antineoplastic activity, in addition to the fact that the reactivity parameters showed that two of the evaluated compounds have the option to present IC50 values lower than or similar to 25 mg/mL, activity like that of indolylisoperezone; moreover, they show molecular coupling to PARP-1. Finally, the prediction of the calculated physicochemical parameters coincides with the Lipinski and Veber rules, indicating that the adsorption, metabolism, and toxicity parameters are acceptable for the studied compounds, obtaining high drug score values. Conclusions: Finally, a comparison between the proposed molecules and others previously synthesized was appropriately performed, establishing that the synthesis of the studied compounds and the determination of their pharmacological properties in an experimental manner are of interest.
Collapse
Affiliation(s)
- Edgar Daniel Moyers-Montoya
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450 Norte, Ciudad Juárez 32310, Chihuahua, Mexico; (E.D.M.-M.); (C.A.M.-P.)
| | - María Jazmín Castañeda-Muñoz
- Centro Médico de Especialidades, Av. De las Américas #201 Nte. Col. Margaritas, Ciudad Juárez 32300, Chihuahua, Mexico;
| | - Daniel Márquez-Olivas
- Departamento de Mantenimiento Industrial y Nanotecnología, Universidad Tecnológica de Ciudad Juárez, Maestría en Ingeniería Industrial Sustentable, Av. Universidad Tecnológica No. 3051, Col. Lote Bravo II, Ciudad Juárez 32695, Chihuahua, Mexico;
| | - René Miranda-Ruvalcaba
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Avenida 1° de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico;
| | - Carlos Alberto Martínez-Pérez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro 450 Norte, Ciudad Juárez 32310, Chihuahua, Mexico; (E.D.M.-M.); (C.A.M.-P.)
| | - Perla E. García-Casillas
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Coahuila, Mexico;
| | - Wilber Montejo-López
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Avenida 1° de Mayo s/n, Colonia Santa María las Torres, Cuautitlán Izcalli 54740, Estado de México, Mexico;
| | - René Gerardo Escobedo-González
- Departamento de Mantenimiento Industrial y Nanotecnología, Universidad Tecnológica de Ciudad Juárez, Maestría en Ingeniería Industrial Sustentable, Av. Universidad Tecnológica No. 3051, Col. Lote Bravo II, Ciudad Juárez 32695, Chihuahua, Mexico;
- Escuela de Ciencias e Ingeniería, Instituto Tecnológico y de Estudios Superiores de Monterrey, Bulevar Tomás Fernández 8945, Parques Industriales, Ciudad Juárez 32470, Chihuahua, Mexico
| |
Collapse
|
2
|
Natesh J, Mondal P, Penta D, Mukhlis Y, Haware DJ, Meeran SM. Protective effect of diindolylmethane-enriched dietary cabbage against doxorubicin-induced cardiotoxicity in mice. J Appl Toxicol 2024; 44:874-891. [PMID: 38327044 DOI: 10.1002/jat.4588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Chemotherapy with doxorubicin (Dox) can lead to cardiotoxic effects, presenting a major complication in cancer therapy. Diindolylmethane (DIM), derived from cruciferous vegetables like cabbage, exhibits numerous health benefits. However, its clinical application is limited because of low bioavailability and suboptimal natural concentrations in dietary sources. To address this limitation, we developed a processing methodology, specifically fermentation and boiling, to enhance DIM levels in cabbage. High-performance liquid chromatography (HPLC) analysis revealed a threefold DIM increase in fermented cabbage and a substantial ninefold increase in fermented-boiled cabbage compared to raw cabbage. To evaluate the clinical implications, we formulated a DIM-enriched diet and administered it to mice undergoing Dox treatment. Our in vivo results revealed that Dox treatment led to cardiotoxicity, manifested by changes in body and heart weight, increased mortality, and severe myocardial tissue degeneration. Dietary administration of the DIM-enriched diet enhanced antioxidant defenses and inhibited apoptosis in the cardiac tissue by interfering with mitoptosis and increasing antioxidant enzyme expression. Interestingly, we found that the DIM-enriched diet inhibited the nuclear translocation of NF-kB in cardiac tissue, thereby downregulating the expression of inflammatory mediators such as TNF-α and IL-6. Further, the DIM-enriched diet significantly reduced serum cardiac injury markers elevated by Dox treatment. These results suggest that the DIM-enriched cabbage diet can serve as a complementary dietary intervention for cancer patients undergoing chemotherapy. Further, our research highlights the role of plant-based diets in reducing treatment side effects and improving the quality of life for cancer patients.
Collapse
Affiliation(s)
- Jagadish Natesh
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priya Mondal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dhanamjai Penta
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yahya Mukhlis
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Jaganath Haware
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Food Safety & Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
| | - Syed Musthapa Meeran
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Nagia M, Morgan I, Gamel MA, Farag MA. Maximizing the value of indole-3-carbinol, from its distribution in dietary sources, health effects, metabolism, extraction, and analysis in food and biofluids. Crit Rev Food Sci Nutr 2023; 64:8133-8154. [PMID: 37051943 DOI: 10.1080/10408398.2023.2197065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Indole-3-carbinol (I3C) is a major dietary component produced in Brassica vegetables from glucosinolates (GLS) upon herbivores' attack. The compound is gaining increasing interest due to its anticancer activity. However, reports about improving its level in plants or other sources are still rare. Unfortunately, I3C is unstable in acidic media and tends to polymerize rendering its extraction and detection challenging. This review presents a multifaceted overview of I3C regarding its natural occurrence, biosynthesis, isolation, and extraction procedure from dietary sources, and optimization for the best recovery yield. Further, an overview is presented on its metabolism and biotransformation inside the body to account for its health benefits and factors to ensure the best metabolic yield. Compile of the different analytical approaches for I3C analysis in dietary sources is presented for the first time, together with approaches for its detection and its metabolism in body fluids for proof of efficacy. Lastly, the chemopreventive effects of I3C and the underlying action mechanisms are summarized. Optimizing the yield and methods for the detection of I3C will assist for its incorporation as a nutraceutical or adjuvant in cancer treatment programs. Highlighting the complete biosynthetic pathway and factors involved in I3C production will aid for its future biotechnological production.
Collapse
Affiliation(s)
- Mohamed Nagia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Chemistry of Natural Compounds, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Mirette A Gamel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Sadhukhan P, Seiwert TY. The role of macrophages in the tumor microenvironment and tumor metabolism. Semin Immunopathol 2023; 45:187-201. [PMID: 37002376 DOI: 10.1007/s00281-023-00988-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
The complexity and plasticity of the tumor microenvironment (TME) make it difficult to fully understand the intratumoral regulation of different cell types and their activities. Macrophages play a crucial role in the signaling dynamics of the TME. Among the different subtypes of macrophages, tumor-associated macrophages (TAMs) are often associated with poor prognosis, although some subtypes of TAMs can at the same time improve treatment responsiveness and lead to favorable clinical outcomes. TAMs are key regulators of cancer cell proliferation, metastasis, angiogenesis, extracellular matrix remodeling, tumor metabolism, and importantly immunosuppression in the TME by modulating various chemokines, cytokines, and growth factors. TAMs have been identified as a key contributor to resistance to chemotherapy and cancer immunotherapy. In this review article, we aim to discuss the mechanisms by which TAMs regulate innate and adaptive immune signaling in the TME and summarize recent preclinical research on the development of therapeutics targeting TAMs and tumor metabolism.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Johns Hopkins University, Skip Viragh Outpatient Cancer Building, Baltimore, MD, 21287, USA
| | - Tanguy Y Seiwert
- Johns Hopkins University, Skip Viragh Outpatient Cancer Building, Baltimore, MD, 21287, USA.
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|