1
|
Jiang X, Jiang Z, Cheng Q, Sun W, Jiang M, Sun Y. Cholecystectomy promotes the development of colorectal cancer by the alternation of bile acid metabolism and the gut microbiota. Front Med (Lausanne) 2022; 9:1000563. [PMID: 36213655 PMCID: PMC9540502 DOI: 10.3389/fmed.2022.1000563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality of colorectal cancer (CRC) have been markedly increasing worldwide, causing a tremendous burden to the healthcare system. Therefore, it is crucial to investigate the risk factors and pathogenesis of CRC. Cholecystectomy is a gold standard procedure for treating symptomatic cholelithiasis and gallstone diseases. The rhythm of bile acids entering the intestine is altered after cholecystectomy, which leads to metabolic disorders. Nonetheless, emerging evidence suggests that cholecystectomy might be associated with the development of CRC. It has been reported that alterations in bile acid metabolism and gut microbiota are the two main reasons. However, the potential mechanisms still need to be elucidated. In this review, we mainly discussed how bile acid metabolism, gut microbiota, and the interaction between the two factors influence the development of CRC. Subsequently, we summarized the underlying mechanisms of the alterations in bile acid metabolism after cholecystectomy including cellular level, molecular level, and signaling pathways. The potential mechanisms of the alterations on gut microbiota contain an imbalance of bile acid metabolism, cellular immune abnormality, acid-base imbalance, activation of cancer-related pathways, and induction of toxin, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qi Cheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Yan Sun,
| |
Collapse
|
2
|
Zhou X, Kandalai S, Hossain F, Zheng Q. Tumor microbiome metabolism: A game changer in cancer development and therapy. Front Oncol 2022; 12:933407. [PMID: 35936744 PMCID: PMC9351545 DOI: 10.3389/fonc.2022.933407] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating recent evidence indicates that the human microbiome plays essential roles in pathophysiological states, including cancer. The tumor microbiome, an emerging concept that has not yet been clearly defined, has been proven to influence both cancer development and therapy through complex mechanisms. Small molecule metabolites produced by the tumor microbiome through unique biosynthetic pathways can easily diffuse into tissues and penetrate cell membranes through transporters or free diffusion, thus remodeling the signaling pathways of cancer and immune cells by interacting with biomacromolecules. Targeting tumor microbiome metabolism could offer a novel perspective for not only understanding cancer progression but also developing new strategies for the treatment of multiple cancer types. Here, we summarize recent advances regarding the role the tumor microbiome plays as a game changer in cancer biology. Specifically, the metabolites produced by the tumor microbiome and their potential effects on the cancer development therapy are discussed to understand the importance of the microbial metabolism in the tumor microenvironment. Finally, new anticancer therapeutic strategies that target tumor microbiome metabolism are reviewed and proposed to provide new insights in clinical applications.
Collapse
Affiliation(s)
- Xiaozhuang Zhou
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Shruthi Kandalai
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Farzana Hossain
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Jang JY, Im E, Choi YH, Kim ND. Mechanism of Bile Acid-Induced Programmed Cell Death and Drug Discovery against Cancer: A Review. Int J Mol Sci 2022; 23:7184. [PMID: 35806184 PMCID: PMC9266679 DOI: 10.3390/ijms23137184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bile acids are major signaling molecules that play a significant role as emulsifiers in the digestion and absorption of dietary lipids. Bile acids are amphiphilic molecules produced by the reaction of enzymes with cholesterol as a substrate, and they are the primary metabolites of cholesterol in the body. Bile acids were initially considered as tumor promoters, but many studies have deemed them to be tumor suppressors. The tumor-suppressive effect of bile acids is associated with programmed cell death. Moreover, based on this fact, several synthetic bile acid derivatives have also been used to induce programmed cell death in several types of human cancers. This review comprehensively summarizes the literature related to bile acid-induced programmed cell death, such as apoptosis, autophagy, and necroptosis, and the status of drug development using synthetic bile acid derivatives against human cancers. We hope that this review will provide a reference for the future research and development of drugs against cancer.
Collapse
Affiliation(s)
- Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea;
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| |
Collapse
|
4
|
Thomas JP, Modos D, Rushbrook SM, Powell N, Korcsmaros T. The Emerging Role of Bile Acids in the Pathogenesis of Inflammatory Bowel Disease. Front Immunol 2022; 13:829525. [PMID: 35185922 PMCID: PMC8850271 DOI: 10.3389/fimmu.2022.829525] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated inflammatory disorder of the gastrointestinal tract that arises due to complex interactions between host genetic risk factors, environmental factors, and a dysbiotic gut microbiota. Although metagenomic approaches have attempted to characterise the dysbiosis occurring in IBD, the precise mechanistic pathways interlinking the gut microbiota and the intestinal mucosa are still yet to be unravelled. To deconvolute these complex interactions, a more reductionist approach involving microbial metabolites has been suggested. Bile acids have emerged as a key class of microbiota-associated metabolites that are perturbed in IBD patients. In recent years, metabolomics studies have revealed a consistent defect in bile acid metabolism with an increase in primary bile acids and a reduction in secondary bile acids in IBD patients. This review explores the evolving evidence that specific bile acid metabolites interact with intestinal epithelial and immune cells to contribute to the inflammatory milieu seen in IBD. Furthermore, we summarise evidence linking bile acids with intracellular pathways that are known to be relevant in IBD including autophagy, apoptosis, and the inflammasome pathway. Finally, we discuss how novel experimental and bioinformatics approaches could further advance our understanding of the role of bile acids and inform novel therapeutic strategies in IBD.
Collapse
Affiliation(s)
- John P Thomas
- Gut Microbes and Health Programme, Quadram Bioscience, Norwich, United Kingdom.,Organisms and Ecosystem, Earlham Institute, Norwich, United Kingdom.,Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Dezso Modos
- Gut Microbes and Health Programme, Quadram Bioscience, Norwich, United Kingdom.,Organisms and Ecosystem, Earlham Institute, Norwich, United Kingdom
| | - Simon M Rushbrook
- Gut Microbes and Health Programme, Quadram Bioscience, Norwich, United Kingdom.,Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, United Kingdom.,Department of Hepatology, University of East Anglia Medical School, Norwich, United Kingdom
| | - Nick Powell
- Division of Digestive Diseases, Imperial College London, London, United Kingdom
| | - Tamas Korcsmaros
- Gut Microbes and Health Programme, Quadram Bioscience, Norwich, United Kingdom.,Organisms and Ecosystem, Earlham Institute, Norwich, United Kingdom.,Division of Digestive Diseases, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Zhang W, An Y, Qin X, Wu X, Wang X, Hou H, Song X, Liu T, Wang B, Huang X, Cao H. Gut Microbiota-Derived Metabolites in Colorectal Cancer: The Bad and the Challenges. Front Oncol 2021; 11:739648. [PMID: 34733783 PMCID: PMC8558397 DOI: 10.3389/fonc.2021.739648] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence from studies in humans and animal models has elucidated that gut microbiota, acting as a complex ecosystem, contributes critically to colorectal cancer (CRC). The potential mechanisms often reported emphasize the vital role of carcinogenic activities of specific pathogens, but in fact, a series of metabolites produced from exogenous dietary substrates or endogenous host compounds occupy a decisive position similarly. Detrimental gut microbiota-derived metabolites such as trimethylamine-N-oxide, secondary bile acids, hydrogen sulfide and N-nitroso compounds could reconstruct the ecological composition and metabolic activity of intestinal microorganisms and formulate a microenvironment that opens susceptibility to carcinogenic stimuli. They are implicated in the occurrence, progression and metastasis of CRC through different mechanisms, including inducing inflammation and DNA damage, activating tumorigenic signaling pathways and regulating tumor immunity. In this review, we mainly summarized the intimate relationship between detrimental gut microbiota-derived metabolites and CRC, and updated the current knowledge about detrimental metabolites in CRC pathogenesis. Then, multiple interventions targeting these metabolites for CRC management were critically reviewed, including diet modulation, probiotics/prebiotics, fecal microbiota transplantation, as well as more precise measures such as engineered bacteria, phage therapy and chemopreventive drugs. A better understanding of the interplay between detrimental microbial metabolites and CRC would hold great promise against CRC.
Collapse
Affiliation(s)
- Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yaping An
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xuemei Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xinyu Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xueli Song
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
6
|
Cao L, Gao Y, Wang XZ, Shu GY, Hu YN, Xie ZP, Cui W, Guo XP, Zhou X. A Series of Efficient Umbrella Modeling Strategies to Track Irradiation-Mutation Strains Improving Butyric Acid Production From the Pre-development Earlier Stage Point of View. Front Bioeng Biotechnol 2021; 9:609345. [PMID: 34222207 PMCID: PMC8242359 DOI: 10.3389/fbioe.2021.609345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridium tyrobutyricum (C. tyrobutyricum) is a fermentation strain used to produce butyric acid. A promising new biofuel, n-butanol, can be produced by catalysis of butyrate, which can be obtained through microbial fermentation. Butyric acid has various uses in food additives and flavor agents, antiseptic substances, drug formulations, and fragrances. Its use as a food flavoring has been approved by the European Union, and it has therefore been listed on the EU Lists of Flavorings. As butyric acid fermentation is a cost-efficient process, butyric acid is an attractive feedstock for various biofuels and food commercialization products. 12C6+ irradiation has advantages over conventional mutation methods for fermentation production due to its dosage conformity and excellent biological availability. Nevertheless, the effects of these heavy-ion irradiations on the specific productiveness of C. tyrobutyricum are still uncertain. We developed non-structured mathematical models to represent the heavy-ion irradiation of C. tyrobutyricum in biofermentation reactors. The kinetic models reflect various fermentation features of the mutants, including the mutant strain growth model, butyric acid formation model, and medium consumption model. The models were constructed based on the Markov chain Monte Carlo model and logistic regression. Models were verified using experimental data in response to different initial glucose concentrations (0-180 g/L). The parameters of fixed proposals are applied in the various fermentation stages. Predictions of these models were in accordance well with the results of fermentation assays. The maximum butyric acid production was 56.3 g/L. Our study provides reliable information for increasing butyric acid production and for evaluating the feasibility of using mutant strains of C. tyrobutyricum at the pre-development phase.
Collapse
Affiliation(s)
- Li Cao
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Zhen Wang
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Guang-Yuan Shu
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Ya-Nan Hu
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Zong-Ping Xie
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Wei Cui
- College of Life Sciences and Engineering, Hexi University, Zhangye, China
| | - Xiao-Peng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Huang X, Wang B, Chen R, Zhong S, Gao F, Zhang Y, Niu Y, Li C, Shi G. The Nuclear Farnesoid X Receptor Reduces p53 Ubiquitination and Inhibits Cervical Cancer Cell Proliferation. Front Cell Dev Biol 2021; 9:583146. [PMID: 33889569 PMCID: PMC8056046 DOI: 10.3389/fcell.2021.583146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/10/2021] [Indexed: 02/05/2023] Open
Abstract
The role of farnesoid X receptor (FXR) in cervical cancer and the underlying molecular mechanism remain largely unknown. Therefore, this study aimed to assess the mechanism of FXR in cervical cancer. Western blot, qRT-PCR, and immunohistochemistry demonstrated that FXR was significantly reduced in squamous cell carcinoma tissues, although there were no associations of metastasis and TNM stage with FXR. In Lenti-FXR cells obtained by lentiviral transfection, the overexpression of FXR reduced cell viability and colony formation. Compared with the Lenti-Vector groups, the overexpression of FXR induced early and late apoptosis and promoted G1 arrest. With time, early apoptosis decreased, and late apoptosis increased. In tumor xenograft experiments, overexpression of FXR upregulated small heterodimer partner (SHP), murine double minute-2 (MDM2), and p53 in the nucleus. Co-immunoprecipitation (Co-IP) showed that SHP directly interacted with MDM2, which is important to protect p53 from ubiquitination. Nutlin3a increased MDM2 and p53 amounts in the Lenti-Vector groups, without effects in the Lenti-FXR groups. Silencing SHP reduced MDM2 and p53 levels in the Lenti-FXR groups, and Nutlin3a counteracted these effects. Taken together, these findings suggest that FXR inhibits cervical cancer via upregulation of SHP, MDM2, and p53.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Runji Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Congzhu Li
- Department of Gynecology, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| |
Collapse
|
8
|
Petrick JL, Florio AA, Koshiol J, Pfeiffer RM, Yang B, Yu K, Chen CJ, Yang HI, Lee MH, McGlynn KA. Prediagnostic concentrations of circulating bile acids and hepatocellular carcinoma risk: REVEAL-HBV and HCV studies. Int J Cancer 2020; 147:2743-2753. [PMID: 32406072 DOI: 10.1002/ijc.33051] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/09/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the dominant histologic type of liver cancer, accounting for 75% of cases. Growing evidence suggests that the cross-talk between the gut microbiome and metabolome (ie, gut-liver axis) are related to the development of hepatic inflammation, and ultimately, HCC. Bile acids are metabolites, derived from cholesterol and synthesized in the liver, which may have a critical role in regulation of the gut-liver axis. We investigated whether prediagnostic circulating bile acids were associated with HCC risk, using the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL)-Hepatitis B Virus (HBV) and REVEAL-Hepatitis C Virus (HCV) cohorts from Taiwan. Fifteen bile acids were quantitated using liquid chromatography, from 185 cases and 161 matched controls in REVEAL-HBV and 96 cases and 96 matched controls in REVEAL-HCV. Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between bile acid levels and HCC were calculated using multivariable-adjusted logistic regression. Higher levels of glycine and taurine conjugated primary bile acids were associated with a 2- to 8-fold increased risk of HBV- (eg, glycocholic acid ORQ4vsQ1 = 3.38, 95% CI: 1.48-7.71, Ptrend < .003) and HCV-related HCC (eg, OR = 8.16, 95% CI: 2.21-30.18, Ptrend < .001). However, higher levels of the secondary bile acid deoxycholic acid were inversely associated with HBV-related HCC risk (OR = 0.41, 95% CI: 0.19-0.88, Ptrend = .02). Our study provides evidence that higher concentrations of bile acids-specifically, conjugated primary bile acids-are associated with increased HCC risk. However, our study does not support the hypothesis that higher levels of secondary bile acids increase liver cancer risk; indeed, deoxycholic acid may be associated with a decreased HCC risk.
Collapse
Affiliation(s)
- Jessica L Petrick
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.,Slone Epidemiology Center, Boston University, Boston, Massachusetts, USA
| | - Andrea A Florio
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Baiyu Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kelly Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Bhadoria R, Ping K, Lohk C, Järving I, Starkov P. A phenotypic approach to probing cellular outcomes using heterobivalent constructs. Chem Commun (Camb) 2020; 56:4216-4219. [PMID: 32181457 DOI: 10.1039/c9cc09595k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various conjugation techniques are used to affect the intracellular delivery of bioactive small molecules. However, the ability to track changes in the phenotype when applying these tools remains poorly studied. We addressed this issue by having prepared a focused library of heterobivalent constructs based on Rho kinase inhibitor HA-100. By comparing the induction of the phenotype of interest, cell viability and cellular uptake, we demonstrate that various conjugates indeed lead to divergent cellular outcomes.
Collapse
Affiliation(s)
- Rohit Bhadoria
- Department of Chemistry & Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | | | | | | | | |
Collapse
|
10
|
Hanley MP, Aladelokun O, Kadaveru K, Rosenberg DW. Methyl Donor Deficiency Blocks Colorectal Cancer Development by Affecting Key Metabolic Pathways. Cancer Prev Res (Phila) 2019; 13:1-14. [PMID: 31748255 DOI: 10.1158/1940-6207.capr-19-0188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 01/01/2023]
Abstract
Our understanding of the role of folate one-carbon metabolism in colon carcinogenesis remains incomplete. Previous studies indicate that a methyl donor-deficient (MDD) diet lacking folic acid, choline, methionine, and vitamin B12 is associated with long-lasting changes to the intestinal epithelium and sustained tumor protection in Apc-mutant mice. However, the metabolic pathways by which the MDD diet affects these changes are unknown. Colon samples harvested from ApcΔ14/+ mice fed the MDD diet for 18 weeks were profiled using a GC-MS and LC-MS/MS metabolomics platform. Random forest and pathway analyses were used to identify altered metabolic pathways, and associated gene expression changes were analyzed by RT-PCR. Approximately 100 metabolites affected by the MDD diet were identified. As expected, metabolites within the methionine cycle, including methionine (-2.9-fold, P < 0.001) and betaine (-3.3-fold, P < 0.001), were reduced. Elevated homocysteine (110-fold, P < 0.001) was associated with increased flux through the transsulfuration pathway. Unexpectedly, levels of deoxycholic acid (-4.5-fold, P < 0.05) and several other secondary bile acids were reduced. There were also unexpected reductions in the levels of carnitine (-2.0-fold, P < 0.01) and a panel of acylcarnitines involved in fatty acid β-oxidation. Finally, metabolites involved in redox balance, including ascorbate and hypotaurine, were found to be persistently elevated. These findings provide clues to the molecular changes underlying MDD-mediated tumor protection and identify regulatable metabolic pathways that may provide new targets for colon cancer prevention and treatment. IMPLICATIONS: Metabolomic profiling reveals molecular changes underlying MDD-induced tumor protection and may provide new targets for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Matthew P Hanley
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut
| | | | - Krishna Kadaveru
- Center for Molecular Oncology, UConn Health, Farmington, Connecticut
| | | |
Collapse
|
11
|
Xia Y, Fang Y, Zhang H, Shen C, Wang P, Yan W, Li J, Xu Y, Shao S, Zhang Y, Yu X, Peng Z, Peng G, Chen W, Fang D. Role of Kruppel-Like Factor 5 in Deoxycholic Acid-Mediated Intestinal Transdifferentiation of Esophageal Squamous Epithelium. J Cancer 2019; 10:5597-5607. [PMID: 31632504 PMCID: PMC6775683 DOI: 10.7150/jca.30050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/26/2019] [Indexed: 12/15/2022] Open
Abstract
Barrett's esophagus (BE) is an acquired condition in which normal squamous epithelium is replaced with metaplastic columnar epithelium as a consequence of gastroesophageal reflux disease. BE is known as a precursor of esophageal adenocarcinoma. Currently, the molecular mechanism underlying epithelial metaplasia in BE patients remains unknown. Therefore, we investigated the role of Krüppel-like factor 5 (KLF5) signaling in the initiation of BE-associated metaplasia. Sprague-Dawley (SD) rats were used to create a surgical model of bile reflux injury. Immunohistochemistry was performed to analyze human and mouse esophageal specimens. Human esophageal squamous epithelial (HET-1A) cells were treated with bile acid and used in transfection experiments. Quantitative real-time PCR and western blot analysis were performed to detect the expression of KLF5, CDX2, MUC2 and villin. Epithelial tissue from both the rat BE model and human BE patients strongly expressed KLF5, CDX2, MUC2, and villin. Bile acid treatment also increased the expression of KLF5, CDX2, MUC2 and villin in esophageal epithelial cells in a time-dependent manner. Moreover, siRNA-mediated knockdown of KLF5 blocked the expression of CDX2, MUC2 and villin, but transfection of a KLF5 expression vector into esophageal epithelial cells promoted their transdifferentiation into columnar-like cells, as demonstrated by increased expression of the intestinal markers CDX2, MUC2 and villin. Thus, in addition to its function as a transcription factor, KLF5 may be linked to an increased risk of BE development.
Collapse
Affiliation(s)
- Yiju Xia
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Yu Fang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Haoxiang Zhang
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Caifei Shen
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Pu Wang
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Wu Yan
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Jingwen Li
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Yin Xu
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Shunzi Shao
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Yafei Zhang
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Xiaona Yu
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Zhihong Peng
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Guiyong Peng
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Dianchun Fang
- Department of Gastroenterology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| |
Collapse
|
12
|
Mooranian A, Zamani N, Takechi R, Al-Sallami H, Mikov M, Goločorbin-Kon S, Kovacevic B, Arfuso F, Al-Salami H. Pharmacological effects of nanoencapsulation of human-based dosing of probucol on ratio of secondary to primary bile acids in gut, during induction and progression of type 1 diabetes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S748-S754. [PMID: 30422681 DOI: 10.1080/21691401.2018.1511572] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The ratio of secondary to primary bile acids changes during Type 1 Diabetes (T1D) development and these effects might be ameliorated by using cholesterol lowering drugs or hydrophilic bile acids. Probucol is a cholesterol-lowering drug, while ursodeoxycholic acid is a hydrophilic bile acid. This study investigated whether nanoencapsulated probucol with ursodeoxycholic acid altered bile acid ratios and the development of diabetes. METHODS Balb/c mice were divided into three groups and gavaged daily with either free probucol, nanoencapsulated probucol or nanoencapsulated probucol with ursodeoxycholic acid for seven days. Alloxan was injected and once T1D was confirmed the mice continued to receive daily gavages until euthanasia. Blood, tissues, faeces and urine were collected for analysis of insulin and bile acids. RESULTS AND CONCLUSIONS Nanoencapsulated probucol-ursodeoxycholic acid resulted in significant levels of insulin in the blood, lower levels of secondary bile acids in liver and lower levels of primary bile acids in brain, while ratio of secondary to primary bile acids remains similar among all groups, except in the faeces. Findings suggests that nanoencapsulated probucol-ursodeoxycholic acid may exert a protective effect on pancreatic β-cells and reserve systemic insulin load via modulation of bile acid concentrations in the liver and brain.
Collapse
Affiliation(s)
- Armin Mooranian
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Nassim Zamani
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Ryu Takechi
- b School of Public Health , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | | | - Momir Mikov
- d Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine , University of Novi Sad , Novi Sad , Serbia
| | | | - Bozica Kovacevic
- e Department of Pharmacy , University of Novi Sad , Novi Sad , Serbia
| | - Frank Arfuso
- f Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| | - Hani Al-Salami
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences , Curtin Health Innovation Research Institute, Curtin University , Perth , Australia
| |
Collapse
|
13
|
Cubuk C, Hidalgo MR, Amadoz A, Pujana MA, Mateo F, Herranz C, Carbonell-Caballero J, Dopazo J. Gene Expression Integration into Pathway Modules Reveals a Pan-Cancer Metabolic Landscape. Cancer Res 2018; 78:6059-6072. [PMID: 30135189 DOI: 10.1158/0008-5472.can-17-2705] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/31/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
Abstract
Metabolic reprogramming plays an important role in cancer development and progression and is a well-established hallmark of cancer. Despite its inherent complexity, cellular metabolism can be decomposed into functional modules that represent fundamental metabolic processes. Here, we performed a pan-cancer study involving 9,428 samples from 25 cancer types to reveal metabolic modules whose individual or coordinated activity predict cancer type and outcome, in turn highlighting novel therapeutic opportunities. Integration of gene expression levels into metabolic modules suggests that the activity of specific modules differs between cancers and the corresponding tissues of origin. Some modules may cooperate, as indicated by the positive correlation of their activity across a range of tumors. The activity of many metabolic modules was significantly associated with prognosis at a stronger magnitude than any of their constituent genes. Thus, modules may be classified as tumor suppressors and oncomodules according to their potential impact on cancer progression. Using this modeling framework, we also propose novel potential therapeutic targets that constitute alternative ways of treating cancer by inhibiting their reprogrammed metabolism. Collectively, this study provides an extensive resource of predicted cancer metabolic profiles and dependencies.Significance: Combining gene expression with metabolic modules identifies molecular mechanisms of cancer undetected on an individual gene level and allows discovery of new potential therapeutic targets. Cancer Res; 78(21); 6059-72. ©2018 AACR.
Collapse
Affiliation(s)
- Cankut Cubuk
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla, Spain
| | - Marta R Hidalgo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla, Spain
| | | | - Miguel A Pujana
- ProCURE, Catalan Institute of Oncology. Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology. Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Carmen Herranz
- ProCURE, Catalan Institute of Oncology. Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | | | - Joaquin Dopazo
- Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), CDCA, Hospital Virgen del Rocio, Sevilla, Spain. .,Functional Genomics Node, INB-ELIXIR-es, FPS, Hospital Virgen del Rocío, Sevilla, Spain.,Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Sevilla, Spain
| |
Collapse
|
14
|
The role of bile acids in cellular invasiveness of gastric cancer. Cancer Cell Int 2018; 18:75. [PMID: 29942193 PMCID: PMC5963058 DOI: 10.1186/s12935-018-0569-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
Background Bile acids have been implicated in the development of digestive tract malignancy by epidemiological, clinical and animal studies. The growth and transformation signaling by most of the bile acids is thought to be related to the induced cyclooxygenase-2 (COX-2) expression and increased production of prostaglandin E2 (PGE2). The highly hydrophobic bile acids such as chenodeoxycholic acid (CD) and deoxycholic acid can promote carcinogenesis and stimulate the invasion of colon cancer cells. On the contrary, ursodeoxycholic acid (UDCA), a less hydrophobic stereoisomer of CD, inhibits proliferation and induces apoptosis in colon cancer cells. We examined the effects of bile acid on human gastric cancer cells MKN-74. Methods Early-passage human gastric cancer MKN-74 cells were used for drug treatment, preparation of whole cell lysates, subcellular extracts and Western blot analysis. The levels of PGE2 released by the cells were measured by enzyme inummoassay to indicate COX-2 enzymatic activity. Cellular invasion assay was performed in Boyden chamber. Results Exposure of CD led to activation of protein kinase C (PKC) alpha, increased COX-2 expression and increased PGE2 synthesis. The induced COX-2 protein expression could be detected within 4 h exposure of 200 μM CD, and it was dose- and time-dependent. PGE2 is the product of COX-2, and has been reported to cause tumor invasion and angiogenesis in animal study. Safingol (SAF), a PKC inhibitor, suppressed the COX-2 protein expression and PGE2 production by CD in MKN-74. Furthermore, UDCA suppressed PGE2 production by CD but did not affect COX-2 protein expression induced by CD. Using a Boyden chamber invasion assay, both SAF and UDCA impeded CD induced tumor invasiveness of MKN-74 by 30–50%. Conclusions Our results indicate that signaling of hydrophobic bile acid such as CD in gastric cancer cells is through PKC activation and COX-2 induction, which leads to increased cellular invasion. By perturbing the bile acid pool, UDCA attenuates CD-induced PGE2 synthesis and tumor invasiveness.
Collapse
|
15
|
Opposing effects of bile acids deoxycholic acid and ursodeoxycholic acid on signal transduction pathways in oesophageal cancer cells. Eur J Cancer Prev 2018; 25:368-79. [PMID: 26378497 DOI: 10.1097/cej.0000000000000198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ursodeoxycholic acid (UDCA) was reported to reduce bile acid toxicity, but the mechanisms underlying its cytoprotective effects are not fully understood. The aim of the present study was to examine the effects of UDCA on the modulation of deoxycholic acid (DCA)-induced signal transduction in oesophageal cancer cells. Nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity was assessed using a gel shift assay. NF-κB activation and translocation was performed using an ELISA-based assay and immunofluorescence analysis. COX-2 expression was analysed by western blotting and COX-2 promoter activity was assessed by luciferase assay. DCA induced NF-κB and AP-1 DNA-binding activities in SKGT-4 and OE33 cells. UDCA pretreatment inhibited DCA-induced NF-κB and AP-1 activation and NF-κB translocation. This inhibitory effect was coupled with a blockade of IκB-α degradation and inhibition of phosphorylation of IKK-α/β and ERK1/2. Moreover, UDCA pretreatment inhibited COX-2 upregulation. Using transient transfection of the COX-2 promoter, UDCA pretreatment abrogated DCA-induced COX-2 promoter activation. In addition, UDCA protected oesophageal cells from the apoptotic effects of deoxycholate. Our findings indicate that UDCA inhibits DCA-induced signalling pathways in oesophageal cancer cells. These data indicate a possible mechanistic role for the chemopreventive actions of UDCA in oesophageal carcinogenesis.
Collapse
|
16
|
Rao BB, Lashner B, Kowdley KV. Reviewing the Risk of Colorectal Cancer in Inflammatory Bowel Disease After Liver Transplantation for Primary Sclerosing Cholangitis. Inflamm Bowel Dis 2018; 24:269-276. [PMID: 29361103 DOI: 10.1093/ibd/izx056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 02/07/2023]
Abstract
The presence of concomitant primary sclerosing cholangitis (PSC) with inflammatory bowel disease (IBD) represents a distinct disease phenotype that carries a higher risk of colorectal cancer (CRC) than the average IBD patient. Given that liver transplantation (LT) is the only treatment that offers a survival benefit in PSC patients with hepatic dysfunction, management decisions in IBD patients' post-LT for PSC are frequently encountered. One such consideration is the risk of CRC in this immunosuppressed cohort. With most studies showing an increased risk of CRC post-LT in these IBD patients, a closer look at the associated risk factors of CRC and the adopted surveillance strategies in this subset of patients is warranted. Low-dose ursodeoxycholic acid has shown a potential chemopreventive effect in PSC-IBD patients pre-LT; however, a favorable effect remains to be seen in post-LT group. Also, further studies are necessary to assess the benefit of 5 aminosalicylate therapy. Annual surveillance colonoscopy in the post-LT period is recommended for PSC-IBD patients subset given their high risk for CRC.
Collapse
Affiliation(s)
- Bhavana Bhagya Rao
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Bret Lashner
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Kris V Kowdley
- Liver Care Network and Organ Care Research, Swedish Medical Center, Seattle, Washington
| |
Collapse
|
17
|
Li K, Scott AM, Brant CO, Fissette SD, Riedy JJ, Hoye TR, Li W. Bile Salt-like Dienones Having a Novel Skeleton or a Rare Substitution Pattern Function as Chemical Cues in Adult Sea Lamprey. Org Lett 2017; 19:4444-4447. [PMID: 28816048 DOI: 10.1021/acs.orglett.7b01921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two novel sulfated bile salt-like dienones, featuring either a unique, rearranged side chain or a rare cis-11,12-diol on the steroidal C-ring, herein named petromyzene A (1) and B (2), respectively, were isolated from water conditioned with spawning male sea lamprey (Petromyzon marinus; a jawless vertebrate animal). The structures of these natural products were elucidated by mass spectrometry and NMR spectroscopy. Petromyzenes A and B exhibited high olfactory potency for adult sea lamprey and strong behavioral attraction for spawning females.
Collapse
Affiliation(s)
- Ke Li
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Anne M Scott
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Cory O Brant
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Skye D Fissette
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Joseph J Riedy
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University , Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, Michigan 48824, United States
| |
Collapse
|
18
|
Pulusu SSR, Lawrance IC. Dysplasia and colorectal cancer surveillance in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2017; 11:711-722. [PMID: 28475382 DOI: 10.1080/17474124.2017.1327347] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) patients are at an increased risk of developing colorectal cancer (CRC), a devastating complication of which intestinal dysplasia is the precursor. Considerable progress has been made to determine CRC risk in IBD, identification & management of dysplasia and preventative methods. Traditionally, surveillance colonoscopies with random colonic biopsies was used. However recent data suggests that chromoendoscopy is a better method of surveillance. Using 5-aminosalicylic acid agents primarily for chemoprevention is an ongoing debate however, when prescribed along with other strategies to control inflammation, their use is considered of benefit. This review presents current understanding of risk factors of neoplasia focusing on dysplasia and preventive strategies. Areas covered: PubMed search was done using key words to assess current evidence. Along with genetics, risk factors, strategies that modify the risk of dysplasia, and CRC in IBD are discussed in detail. Expert commentary: The role of our strategies in modifying CRC risk needs further assessment. Future research should aim to fill knowledge gaps such as high quality evidence for Chromoendoscopy and development of molecular markers for dysplasia detection. Our ultimate goal would be to eliminate CRC and is possible by better understanding of key pathogenic mechanisms in IBD.
Collapse
Affiliation(s)
- Samba Siva Reddy Pulusu
- a Centre for Inflammatory Bowel Diseases , Saint John of God Hospital , Subiaco , WA , Australia
| | - Ian C Lawrance
- a Centre for Inflammatory Bowel Diseases , Saint John of God Hospital , Subiaco , WA , Australia.,b Harry Perkins Institute of Medical Research, School of Medicine and Pharmacology , University of Western Australia , Murdoch , WA , Australia
| |
Collapse
|
19
|
Bezzio C, Festa S, Saibeni S, Papi C. Chemoprevention of colorectal cancer in ulcerative colitis: digging deep in current evidence. Expert Rev Gastroenterol Hepatol 2017; 11:339-347. [PMID: 28165825 DOI: 10.1080/17474124.2017.1292129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Patients with ulcerative colitis (UC) have an increased risk of developing colorectal cancer (CRC). Surveillance colonoscopy is currently recommended for patients with long-standing extensive colitis for reducing CRC risk. Chemoprevention is an attractive complementary strategy. Areas covered: Inflammation is a major determinant of CRC risk and is potentially modifiable. Reducing inflammation is supposed to reduce CRC risk. Several medications have been evaluated in this setting: 5-ASA, thiopurines, anti-TNFα agents and ursodeoxycholic acid (UCDA) in patients with associated primary sclerosing cholangitis (PSC). This review offers a critical evaluation of current evidence of the potential chemopreventive effect of such medications. Expert commentary: No randomized controlled trials have been performed and the available evidence come from observational studies. Although biological plausibility supports a chemopreventive role of the aforementioned agents, the overall evidence of efficacy is weak because of several methodological limitations of the studies. Indirect epidemiological evidence, biologic plausibility and results of meta-analyses reasonably support a potential chemopreventive effect of 5-ASA. Available evidence does not support a specific chemopreventive effect of purine analogues and anti-TNFα medications, despite their efficacy in the management of inflammatory bowel disease. Data addressing UDCA and folate supplementation are inconclusive. Limited data are available for statins.
Collapse
Affiliation(s)
- Cristina Bezzio
- a Gastroenterology Unit , Rho Hospital, ASST Rhodense , Garbagnate Milanese , Italy
| | - Stefano Festa
- b IBD Unit , San Filippo Neri Hospital , Rome , Italy
| | - Simone Saibeni
- a Gastroenterology Unit , Rho Hospital, ASST Rhodense , Garbagnate Milanese , Italy
| | - Claudio Papi
- b IBD Unit , San Filippo Neri Hospital , Rome , Italy
| |
Collapse
|
20
|
Ehrlich AC, Patel S, Meillier A, Rothstein RD, Friedenberg FK. Chemoprevention of colorectal cancer in inflammatory bowel disease. Expert Rev Anticancer Ther 2017; 17:247-255. [PMID: 28095263 DOI: 10.1080/14737140.2017.1283987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Patients with inflammatory bowel disease are at an increased risk of colorectal cancer when compared to the general population. Chronic inflammation is thought to be the underlying cause, and medications that reduce inflammation have the potential to reduce the risk of colorectal cancer. Areas covered: After conducting a PubMed search for relevant literature, we examined several classes of medications that have been studied as potential chemopreventive agents. These include 5-aminosalicylates, thiopurines, tumor necrosis factor antagonists, ursodeoxycholic acid, NSAIDs, and statins. Expert commentary: While each class of medications has some data to support its use in chemoprevention, the majority of the evidence in each case argues against the routine use of these medications solely for a chemopreventive benefit.
Collapse
Affiliation(s)
- Adam C Ehrlich
- a Section of Gastroenterology , Lewis Katz School of Medicine at Temple University , Philadelphia , PA 19140 , USA
| | - Shyam Patel
- b Department of Medicine , Lewis Katz School of Medicine at Temple University , Philadelphia , PA 19140 , USA
| | - Andrew Meillier
- b Department of Medicine , Lewis Katz School of Medicine at Temple University , Philadelphia , PA 19140 , USA
| | - Robin D Rothstein
- a Section of Gastroenterology , Lewis Katz School of Medicine at Temple University , Philadelphia , PA 19140 , USA
| | - Frank K Friedenberg
- a Section of Gastroenterology , Lewis Katz School of Medicine at Temple University , Philadelphia , PA 19140 , USA
| |
Collapse
|
21
|
Centuori SM, Gomes CJ, Trujillo J, Borg J, Brownlee J, Putnam CW, Martinez JD. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:663-70. [PMID: 27086143 DOI: 10.1016/j.bbalip.2016.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 01/10/2023]
Abstract
Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects.
Collapse
Affiliation(s)
- Sara M Centuori
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Cecil J Gomes
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, United States
| | - Jesse Trujillo
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, United States
| | - Jamie Borg
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Joshua Brownlee
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Jesse D Martinez
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States; Cell & Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
22
|
Pavlidis P, Powell N, Vincent RP, Ehrlich D, Bjarnason I, Hayee B. Systematic review: bile acids and intestinal inflammation-luminal aggressors or regulators of mucosal defence? Aliment Pharmacol Ther 2015. [PMID: 26223936 DOI: 10.1111/apt.13333] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel diseases (IBD), comprising Crohn's disease and ulcerative colitis (UC), are chronic conditions attributed to an aberrant immune response to luminal triggers. Recently, published work suggests a pathogenic role for bile acids in this context. AIM To perform a systematic review of studies investigating the role of bile acids in intestinal inflammation and present potentially relevant clinical implications. METHODS Pubmed search for English language articles published up to May 2015. Terms used were: 'bile', 'bile acid', 'barrier', 'small bowel injury', 'Crohn's' and 'colitis'. RESULTS Experimental studies support a variable role for bile acids in intestinal barrier homoeostasis. This may be attributed to different physicochemical properties, variable effects on epithelia and immune cells via bile acids-specific receptors, or through a cross-talk with the gut microbiome. A reduction in the bile acids pool, with lower concentrations of secondary forms, has been recognised for some time in Crohn's disease and associated to ileal dysfunction and bile acids malabsorption. Recent work suggests that these changes, including an increase in sulphated forms, are related to inflammatory activity in both Crohn's disease and UC. The detrimental effects of 'western diet' elements such as emulsifiers and fat, which have been implicated in the development of the current IBD and obesity epidemics, may also be bile acid-mediated. CONCLUSIONS Although there are only a few observational clinical studies to support an interaction, in vivo human and animal studies support an association between bile acids metabolism, the gut microbiome and intestinal inflammation. This may well prove to have significant diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- P Pavlidis
- Department of Gastroenterology, King's College Hospital, London, UK
| | - N Powell
- Division of Transplantation and Mucosal Biology, King's College London, London, UK
| | - R P Vincent
- Department of Biochemistry, King's College Hospital, London, UK
| | - D Ehrlich
- Centre of Host-Microbiome Interactions, King's College London, London, UK
| | - I Bjarnason
- Department of Gastroenterology, King's College Hospital, London, UK
| | - B Hayee
- Department of Gastroenterology, King's College Hospital, London, UK
| |
Collapse
|
23
|
Ibrahim ZS. Chenodeoxycholic acid increases the induction of CYP1A1 in HepG2 and H4IIE cells. Exp Ther Med 2015; 10:1976-1982. [PMID: 26640583 DOI: 10.3892/etm.2015.2719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/03/2015] [Indexed: 01/17/2023] Open
Abstract
Bile acids are considered to promote carcinogenesis. Cytochrome P450 1A1 (CYP1A1) plays a critical role in the biotransformation of drugs and procarcinogens. This study aimed to investigate the ability of bile acids to modulate CYP1A1 expression. Treatment of HepG2 cells with chenodeoxycholic acid (CDCA) and Sudan III (S.III) upregulated CYP1A1 transcriptional activity in HepG2 cells and CYP1A1 mRNA expression in H4IIE cells. Pretreatment of the HepG2 and H4IIE cells with CDCA upregulated the S.III-induced CYP1A transcriptional activity and mRNA expression. The CDCA-induced enhancement of CYP1A1 was not abolished by the p38 inhibitor SB203580. However, exposure of the cells to the mitogen-activated protein kinase kinase (MEK)1/2 inhibitor PD98059 suppressed the CDCA-induced enhancement of CYP1A1. These results show the ability of CDCA to upregulate CYP1A1 transcription and expression, which may explain the hepatocarcinogenesis-inducing effect of cholestasis. The CDCA-induced upregulation of CYP1A1 most probably proceeded through MEK1/2 activation, indicating that this may be a therapeutic target to prevent the cancer-promoting effects of excessive amounts of bile acids.
Collapse
Affiliation(s)
- Zein Shaban Ibrahim
- Department of Physiology, Faculty of Medicine, Taif University, Taif 21974, Saudi Arabia ; Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
24
|
Kundu S, Kumar S, Bajaj A. Cross-talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications. IUBMB Life 2015; 67:514-23. [PMID: 26177921 DOI: 10.1002/iub.1399] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/16/2022]
Abstract
Increasing incidences of gastrointestinal (GI) cancer are linked to changes in lifestyle with excess of red meat/fat consumption, and elevated secretion of bile acids. Bile acids are strong signaling molecules that control various physiological processes. Failure in bile acid regulation has detrimental effects, often linked with development and promotion of cancer of digestive tract including esophagus, stomach, liver, and intestine. Excessive concentration of bile acids especially lipophillic secondary bile acids are cytotoxic causing apoptosis and reactive oxygen species-mediated damage to the cells. Resistance to this apoptosis and accumulation of mutations leads to progression of cancer. Cytotoxicity of bile acids is contingent on their chemical structure. In this review, we discuss the chemistry of bile acids, bile acid mediated cellular signaling processes, their role in GI cancer progression, and therapeutic potential of synthetic bile acid derivatives for cancer therapy.
Collapse
Affiliation(s)
- Somanath Kundu
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, Faridabad, Haryana, 121001, India.,Manipal University, Manipal, Karnataka, India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, Faridabad, Haryana, 121001, India.,Manipal University, Manipal, Karnataka, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
25
|
Zhang G, Zhang J, Shang D, Qi B, Chen H. Deoxycholic acid inhibited proliferation and induced apoptosis and necrosis by regulating the activity of transcription factors in rat pancreatic acinar cell line AR42J. In Vitro Cell Dev Biol Anim 2015; 51:851-6. [PMID: 25990271 DOI: 10.1007/s11626-015-9907-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 04/01/2015] [Indexed: 12/24/2022]
Abstract
The objective of this study is to investigate the effect of deoxycholic acid (DCA) on rat pancreatic acinar cell line AR42J and the functional mechanisms of DCA on AR42J cells. AR42J cells were treated with various concentrations of DCA for 24 h and also treated with 0.4 mmol/L DCA for multiple times, and then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to detect the AR42J cell survival rate. Flow cytometric was used to detect the cell apoptosis and necrosis in AR42J cells treated with 0.4 mmol/L and 0.8 mmol/L DCA. The cells treated with phosphate buffer saline (PBS) were served as control. In addition, the DNA-binding activity assays of transcription factors (TFs) in nuclear proteins of cells treated with DCA were determined using Panomics Procarta Transcription Factor Assay Kit. The relative survival rates were markedly decreased (P < 0.05) in a dose- and time-dependent manner. Compared with control group, the cell apoptosis and necrosis ratio were both significantly elevated in 0.4 mmol/L DCA and 0.8 mmol/L DCA groups (P < 0.01). A significant increase (P < 0.05) in the activity of transcription factor 2 (ATF2), interferon-stimulated response element (ISRE), NKX-2.5, androgen receptor (AR), p53, and hypoxia-inducible factor-1 (HIF-1) was observed, and the activity of peroxisome proliferator-activated receptor (PPAR), activator protein 1 (AP1), and E2F1 was reduced (P < 0.05). In conclusion, DCA inhibited proliferation and induced apoptosis and necrosis in AR42J cells. The expression changes of related genes regulated by TFs might be the molecular mechanism of AR42J cell injury.
Collapse
Affiliation(s)
- Guixin Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011.
| | - Jingwen Zhang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011. .,Dalian Medical University, Dalian, China, 116044.
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011.
| | - Bing Qi
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011.
| | - Hailong Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, China, 116011.
| |
Collapse
|
26
|
Centuori SM, Martinez JD. Differential regulation of EGFR-MAPK signaling by deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) in colon cancer. Dig Dis Sci 2014; 59:2367-80. [PMID: 25027205 PMCID: PMC4163523 DOI: 10.1007/s10620-014-3190-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.
Collapse
Affiliation(s)
- Sara M. Centuori
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson AZ 85724
| | - Jesse D. Martinez
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson AZ 85724
| |
Collapse
|
27
|
Huang Y, Yao Q, Cui J, Gan C, Huang Q, Su B, Zhou A. Syntheses of lactam derivatives of chenodeoxycholic acid and in vitro antiproliferative activity. Chem Res Chin Univ 2014. [DOI: 10.1007/s40242-014-4003-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Brossard D, Lechevrel M, El Kihel L, Quesnelle C, Khalid M, Moslemi S, Reimund JM. Synthesis and biological evaluation of bile carboxamide derivatives with pro-apoptotic effect on human colon adenocarcinoma cell lines. Eur J Med Chem 2014; 86:279-90. [PMID: 25173827 DOI: 10.1016/j.ejmech.2014.07.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/09/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
We previously reported that the cinnamylpiperazinyl group in the side chain of the chenodeoxycholic acid showed apoptosis-inducing activity on multiple myeloma cancer cell line KMS-11. In the present study, we synthesized and tested the pro-apoptotic potency of fifteen new piperazinyl bile carboxamide derived from cholic, ursodeoxycholic, chenodeoxycholic, deoxycholic and lithocholic acids on human colon adenocarcinoma cell lines DLD-1, HCT-116, and HT-29. Cell viability was first measured using XTT assay. The most of the synthetic bile carboxamide derivatives decreased significantly cell viability in a dose-dependent manner. HCT-116 and DLD-1 cell lines were more sensitive than HT-29 to tested compounds. 9c, 9d showed the best in vitro results in term of solubility and dose-response effect on the three colon adenocarcinoma cell lines. Additionally, flow cytometric and Western-blotting analysis showed that 9c induced pro-apoptosis in DLD-1 and HCT-116 whereas 9d did not. We conclude that the benzyl group improved anti-proliferative activity and that the α-hydroxyl group was found to be more beneficial at the 7-position in steroid skeleton.
Collapse
Affiliation(s)
- Dominique Brossard
- Université de Caen/Basse-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France; UFR des Sciences Pharmaceutiques, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), CNRS INC3M - SFR ICORE 146, Bd Becquerel, F-14032 Caen Cedex, France
| | - Mathilde Lechevrel
- Université de Caen/Basse-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France; UFR de Médecine, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT, EA 4652), SFR ICORE 146, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Laïla El Kihel
- Université de Caen/Basse-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France; UFR des Sciences Pharmaceutiques, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), CNRS INC3M - SFR ICORE 146, Bd Becquerel, F-14032 Caen Cedex, France.
| | - Céline Quesnelle
- Université de Caen/Basse-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France; UFR de Médecine, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT, EA 4652), SFR ICORE 146, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Mohamed Khalid
- Université Hassan Premier, Faculté des Sciences et Techniques, Km 3, Route de Casablanca, BP 577, 26000 Settat, Morocco
| | - Safa Moslemi
- Université de Caen/Basse-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France; UFR de Médecine, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT, EA 4652), SFR ICORE 146, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| | - Jean-Marie Reimund
- Université de Caen/Basse-Normandie, Esplanade de la Paix, 14032 Caen Cedex, France; UFR de Médecine, Laboratoire Microenvironnement Cellulaire et Pathologies (MILPAT, EA 4652), SFR ICORE 146, Avenue de la Côte de Nacre, 14032 Caen Cedex, France
| |
Collapse
|
29
|
Wang R, Leong RM. Primary sclerosing cholangitis as an independent risk factor for colorectal cancer in the context of inflammatory bowel disease: A review of the literature. World J Gastroenterol 2014; 20:8783-8789. [PMID: 25083052 PMCID: PMC4112886 DOI: 10.3748/wjg.v20.i27.8783] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/21/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
To examine and evaluate recent evidence regarding the epidemiology, pathogenesis and management of colorectal cancer (CRC) development in inflammatory bowel disease (IBD)-primary sclerosing cholangitis (PSC) patients. Using the PubMed database, a literature search was conducted for relevant articles in English from the past 10 years. Relevant studies investigating PSC as a risk factor for CRC in IBD in the context of incidence and prevalence, pathogenesis, prevention and prognosis were included in this review. Recent evidence increasingly points to PSC as a significant risk factor in the development of CRC in patients with concomitant IBD. PSC may be an important risk factor for CRC in different populations worldwide. The mechanism for this increase in risk is still unclear. The efficacy of UDCA as a chemopreventive agent remains controversial. Liver transplantation does not halt the development of CRC, although there is not enough evidence to suggest that it is associated with increased incidence of CRC. While routine colonoscopic surveillance should be performed in patients with concurrent PSC and IBD, more high-level evidence is required to support the benefits of the procedure. While many new developments have taken place in the last decade, the pathogenesis and optimal management of CRC development in IBD-PSC patients remain unclear.
Collapse
|
30
|
Mooranian A, Negrulj R, Arfuso F, Al-Salami H. Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:194-200. [PMID: 25014218 DOI: 10.3109/21691401.2014.934457] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION In a recent study, we confirmed good chemical and physical compatibility of microencapsulated pancreatic β-cells using a novel formulation of low viscosity sodium alginate (LVSA), Poly-L-Ornithine (PLO), and the tertiary bile acid, ursodeoxycholic acid (UDCA). This study aimed to investigate the effect of UDCA on the morphology, swelling, stability, and size of these new microcapsules. It also aimed to evaluate cell viability in the microcapsules following UDCA addition. MATERIALS AND METHODS Microencapsulation was carried out using a Büchi-based system. Two (LVSA-PLO, control and LVSA-PLO-UDCA, test) pancreatic β-cells microcapsules were prepared at a constant ratio of 10:1:3, respectively. The microcapsules' morphology, cell viability, swelling characteristics, stability, mechanical strength, Zeta potential, and size analysis were examined. The cell contents in each microcapsule and the microencapsulation efficiency were also examined. RESULTS The addition of UDCA did not affect the microcapsules' morphology, stability, size, or the microencapsulation efficiency. However, UDCA enhanced cell viability in the microcapsules 24 h after microencapsulation (p < 0.01), reduced swelling (p < 0.05), reduced Zeta potential (- 73 ± 2 to - 54 ± 2 mV, p < 0.01), and increased mechanical strength of the microcapsules (p < 0.05) at the end of the 24-h experimental period. DISCUSSION AND CONCLUSION UDCA increased β-cell viability in the microcapsules without affecting the microcapsules' size, morphology, or stability. It also increased the microcapsules' resistance to swelling and optimized their mechanical strength. Our findings suggest potential benefits of the bile acid UDCA in β-cell microencapsulation.
Collapse
Affiliation(s)
- Armin Mooranian
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, CHIRI Biosciences Research Precinct, Curtin University , Perth , WA , Australia
| | - Rebecca Negrulj
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, CHIRI Biosciences Research Precinct, Curtin University , Perth , WA , Australia
| | - Frank Arfuso
- b Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Science, Curtin University , Perth , WA , Australia
| | - Hani Al-Salami
- a Biotechnology and Drug Development Research Laboratory, School of Pharmacy, CHIRI Biosciences Research Precinct, Curtin University , Perth , WA , Australia
| |
Collapse
|
31
|
Tsaitas C, Semertzidou A, Sinakos E. Update on inflammatory bowel disease in patients with primary sclerosing cholangitis. World J Hepatol 2014; 6:178-187. [PMID: 24799986 PMCID: PMC4009473 DOI: 10.4254/wjh.v6.i4.178] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/10/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Patients with primary sclerosing cholangitis (PSC) complicated by inflammatory bowel disease (IBD) represent a distinct subset of patients with unique characteristics, which have serious clinical implications. The aim of this literature review was to shed light to the obscure clinical and molecular aspects of the two diseases combined utilizing current data available and putting issues of diagnosis and treatment into perspective. The prevalence of IBD, mainly ulcerative colitis in PSC patients is estimated to be 21%-80%, dependent on screening programs and nationality. PSC-associated colitis is likely to be extensive, characterized by rectal sparing, backwash ileitis, and generally mild symptoms. It is also more likely to progress to colorectal malignancy, making it imperative for clinicians to maintain a high level of suspicion when tackling PSC patients. There is no optimal surveillance strategy but current guidelines advocate that colonoscopy is necessary at the time of PSC diagnosis with annual endoscopic follow-up. Random biopsies have been criticized and a shift towards targeted biopsies using chromoendoscopy, laser endomicroscopy and narrow-band imaging has been noted. Techniques directed towards genetic mutations instead of histological abnormalities hold promise for easier, more accurate diagnosis of dysplastic lesions. Chemopreventive measures against colorectal cancer have been sought in these patients. Ursodeoxycholic acid seemed promising at first but subsequent studies yielded conflicting results showing anticarcinogenic effects in low doses (8-15 mg/kg per day) and carcinogenic properties in high doses (15-30 mg/kg per day).
Collapse
|
32
|
Lindström L, Hultcrantz R, Boberg KM, Friis-Liby I, Bergquist A. Association between reduced levels of alkaline phosphatase and survival times of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2013; 11:841-6. [PMID: 23353641 DOI: 10.1016/j.cgh.2012.12.032] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/26/2012] [Accepted: 12/21/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Ursodeoxycholic acid (UDCA) has not been shown to stop progression of primary sclerosing cholangitis (PSC). However, patients with primary biliary cirrhosis treated with UDCA whose levels of alkaline phosphatase (ALP) decrease have longer survival times than patients whose levels do not decrease. We compared survival times between patients with PSC treated with UDCA or placebo, with and without decreased levels of ALP. METHODS We collected data from patients enrolled in the Scandinavian PSC UDCA trial. Patients were randomly assigned to groups given UDCA (17-23 mg/kg/day, n = 97) or placebo (n = 101) from 1996-2001 and were followed until 2010. End points were death, liver transplantation, or cholangiocarcinoma. They were considered to be biochemical responders if they had serum levels of ALP that were normal or reduced by ≥40% after 1 year in the trial (regardless of whether they received UDCA or placebo). Numbers of patients surviving until the study end point were compared by using the Kaplan-Meier method. RESULTS There were no differences in survival at the end of the study between patients given UDCA or placebo (P = .774, log-rank); 26 patients in the UDCA group and 29 in the placebo group reached an end point. On the basis of ALP levels, there were 79 responders and 116 nonresponders overall. Of patients given UDCA, significantly more biochemical responders survived for 10 years than nonresponders (P = .03, log-rank). However, differences remained significant regardless of group assignment; overall, patients with reductions in ALP level survived longer than patients without reductions in ALP (P = .0001, log-rank). CONCLUSIONS There is no significant difference in long-term survival between patients with PSC given UDCA (17-23 mg/kg/day) or placebo for 5 years. However, patients who have reduced or normal levels of ALP have longer survival times, regardless of whether they receive UDCA or placebo.
Collapse
Affiliation(s)
- Lina Lindström
- Department of Gastroenterology and Hepatology, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
33
|
Salvador JAR, Carvalho JFS, Neves MAC, Silvestre SM, Leitão AJ, Silva MMC, Sá e Melo ML. Anticancer steroids: linking natural and semi-synthetic compounds. Nat Prod Rep 2013; 30:324-74. [PMID: 23151898 DOI: 10.1039/c2np20082a] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Steroids, a widespread class of natural organic compounds occurring in animals, plants and fungi, have shown great therapeutic value for a broad array of pathologies. The present overview is focused on the anticancer activity of steroids, which is very representative of a rich structural molecular diversity and ability to interact with various biological targets and pathways. This review encompasses the most relevant discoveries on steroid anticancer drugs and leads through the last decade and comprises 668 references.
Collapse
Affiliation(s)
- Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, 3000-508, Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
34
|
Barrasa JI, Olmo N, Lizarbe MA, Turnay J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol In Vitro 2012; 27:964-77. [PMID: 23274766 DOI: 10.1016/j.tiv.2012.12.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/10/2012] [Accepted: 12/20/2012] [Indexed: 02/07/2023]
Abstract
Bile acids are natural detergents mainly involved in facilitating the absorption of dietary fat in the intestine. In addition to this absorptive function, bile acids are also essential in the maintenance of the intestinal epithelium homeostasis. To accomplish this regulatory function, bile acids may induce programmed cell death fostering the renewal of the epithelium. Here we first discuss on the different molecular pathways of cell death focusing on apoptosis in colon epithelial cells. Bile acids may induce apoptosis in colonocytes through different mechanisms. In contrast to hepatocytes, the extrinsic apoptotic pathway seems to have a low relevance regarding bile acid cytotoxicity in the colon. On the contrary, these molecules mainly trigger apoptosis through direct or indirect mitochondrial perturbations, where oxidative stress plays a key role. In addition, bile acids may also act as regulatory molecules involved in different cell signaling pathways in colon cells. On the other hand, there is increasing evidence that the continuous exposure to certain hydrophobic bile acids, due to a fat-rich diet or pathological conditions, may induce oxidative DNA damage that, in turn, may lead to colorectal carcinogenesis as a consequence of the appearance of cell populations resistant to bile acid-induced apoptosis. Finally, some bile acids, such as UDCA, or low concentrations of hydrophobic bile acids, can protect colon cells against apoptosis induced by high concentrations of cytotoxic bile acids, suggesting a dual behavior of these agents as pro-death or pro-survival molecules.
Collapse
Affiliation(s)
- Juan I Barrasa
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
35
|
Trivedi PJ, Chapman RW. PSC, AIH and overlap syndrome in inflammatory bowel disease. Clin Res Hepatol Gastroenterol 2012; 36:420-36. [PMID: 22306055 DOI: 10.1016/j.clinre.2011.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/08/2011] [Accepted: 10/14/2011] [Indexed: 02/07/2023]
Abstract
Primary sclerosing cholangitis (PSC) is a progressive, cholestatic disorder characterised by chronic inflammation and stricture formation of the biliary tree. Symptoms include pruritus, fatigue and in advanced cases ascending cholangitis, cirrhosis and end-stage hepatic failure. Patients are at an increased risk of malignancy arising from the bile ducts, gallbladder, liver and colon. The majority (>80%) of Northern European patients with PSC also have inflammatory bowel disease (IBD), usually ulcerative colitis (UC). IBD commonly presents before the onset of PSC, although the opposite can occur and the onset of both conditions can be separated by many years. The colitis associated with PSC is characteristically mild although frequently involves the whole colon. Despite the majority of patients having relatively inactive colonic disease, paradoxically the risk of colorectal malignancy is substantially increased. Patients may also develop dominant, stenotic lesions of the biliary tree which may be difficult to differentiate from cholangiocarcinoma and the coexistence of IBD may influence the development of this complication. Ursodeoxycholic acid may offer a chemoprotective effect against colorectal malignancy and improve liver biochemical indices. Evidence of any beneficial effect on histological progression of hepatobiliary disease is less clear. High doses (∼25-30 mg/kg/d) may be harmful and should be avoided. Autoimmune hepatitis (AIH) is less common in patients with IBD than PSC, however, an association has been observed. A small subgroup may have an overlap syndrome between AIH and PSC and management should be individualised dependant on liver histology, serum immunoglobulin levels, autoantibodies, degree of biochemical cholestasis and cholangiography.
Collapse
Affiliation(s)
- P J Trivedi
- Centre for Liver Research and NIHR Biomedical Research Unit, University of Birmingham, Wolfson Drive, Edgbaston, Birmingham, B15 2TT United Kingdom.
| | | |
Collapse
|
36
|
Abstract
Colorectal cancer is the third and second most common cancer among men and women, respectively, in France. Interest in the chemoprevention of colorectal cancer has increased over the last two decades. Experimental data strongly suggest that ursodeoxycholic acid (UDCA) may have chemopreventative actions in colorectal cancer. UDCA is able to inhibit tumor development in azoxymethane and in dextran-related colitis models. In high-risk populations such as subjects with previous colorectal adenoma removal or inflammatory bowel disease, five out of 10 published studies suggested beneficial effects with UDCA on colonic carcinogenesis. In the azoxymethane model, UDCA inhibited tumor development by counteracting the tumor-promoting effects of secondary bile acids such as deoxycholic acid (DCA). The opposing effects of UDCA and DCA on lipid raft composition may be central to their effects on colonic tumorigenesis. Differential effects of DCA and UDCA on growth factor and inflammatory signals involved in colorectal carcinogenesis, such as epidermal growth factor receptor (EGFR) signaling and COX-2 expression, very likely mediate their opposing effects on colonic tumor promotion and tumor inhibition, respectively.
Collapse
Affiliation(s)
- Lawrence Serfaty
- Service d'Hépatologie, Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75571 Paris Cedex 12, France.
| |
Collapse
|
37
|
Perrone EE, Liu L, Turner DJ, Strauch ED. Bile salts increase epithelial cell proliferation through HuR-induced c-Myc expression. J Surg Res 2012; 178:155-64. [PMID: 22626558 DOI: 10.1016/j.jss.2012.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 01/05/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Bile salts increase intestinal mucosal proliferation through an increase in c-Myc, a transcription factor that controls the expression of numerous translation regulatory proteins. HuR is an RNA-binding protein that regulates translation of target mRNAs. RNA-binding proteins can control mRNA stability by binding to AU- and U-rich elements located in the 3'-untranslated regions (3'-UTRs) of target mRNAs. AIM To determine how bile salt-induced c-Myc stimulates enterocyte proliferation. METHODS Enterocyte proliferation was measured both in vivo using C57Bl6 mice and in vitro using IEC-6 cells after taurodeoxycholate (TDCA) supplementation. HuR and c-Myc protein expression was determined by immunoblot. c-Myc mRNA expression was determined by PCR. HuR expression was inhibited using specific small interfering RNA. HuR binding to c-Myc mRNA was determined by immunoprecipitation. RESULTS TDCA increased enterocyte proliferation in vivo and in vitro. TDCA stimulates translocation of HuR from the nucleus to the cytoplasm. Cytoplasmic HuR regulates c-Myc translation by HuR binding to the 3'-UTR of c-Myc mRNA. Increased TDCA-induced c-Myc increases enterocyte proliferation. CONCLUSIONS Bile salts have beneficial effects on the intestinal epithelial mucosa, which are important in maintaining intestinal mucosal integrity and function. These data further support an important beneficial role of bile salts in regulation of mucosal growth and repair. Decreased enterocyte exposure to luminal bile salts, as occurs during critical illness, liver failure, starvation, and intestinal injury, may have a detrimental effect on mucosal integrity.
Collapse
Affiliation(s)
- Erin E Perrone
- Department of Pediatric Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
38
|
Synthesis and biological evaluation of new ligustrazine derivatives as anti-tumor agents. Molecules 2012; 17:4972-85. [PMID: 22547319 PMCID: PMC6268357 DOI: 10.3390/molecules17054972] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 11/17/2022] Open
Abstract
To discover new anti-cancer agents with multi-effect and low toxicity, a series of ligustrazine derivatives were synthesized using several effective anti-tumor ingredients of Shiquandabu Wan as starting materials. Our idea was enlightened by the “combination principle” in drug discovery. The ligustrazine derivatives’ anti-tumor activities were evaluated on the HCT-8, Bel-7402, BGC-823, A-549 and A2780 human cancer cell lines. In addition the angiogenesis activities were valued by the chick chorioallantoic membrane (CAM) assay. 1,7-bis(4-(3,5,6-Trimethylpyrazin-2-yl)-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (4) and 3 α,12 α-dihydroxy-5β-dholanic acid-3,5,6-trimethylpyrazin-2-methyl ester (5) not only displayed antiproliferative activities on these cancer cells, but also dramatically suppressed normal angiogenesis in CAM. The LD50 value of the compound 5 exceeded 3.0 g/kg by oral administration in mice.
Collapse
|
39
|
Barnabas A, Chapman RW. Primary sclerosing cholangitis: is any treatment worthwhile? Curr Gastroenterol Rep 2012; 14:17-24. [PMID: 22124849 DOI: 10.1007/s11894-011-0230-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While many therapeutic agents have been evaluated in Primary Sclerosing Cholangitis (PSC), none have been shown in controlled trials to modify the course of disease. The bile acid ursodeoxycholic acid (UDCA) has been widely used in the treatment of PSC but its use remains controversial. It may have a role in providing chemoprotection against the development of colonic dysplasia/cancer in patients with associated inflammatory bowel disease. The exclusion of IgG4-associated cholangitis, which generally responds to immunosuppressant agents, is essential prior to deciding on an appropriate therapeutic strategy in PSC. In the absence of proven therapeutic agents, treatment strategies are usually aimed at minimizing the complications of the biliary disease. Endoscopic management of dominant strictures may improve long-term outcomes. Orthotopic liver transplantation has a good outcome in patients with end stage PSC.
Collapse
Affiliation(s)
- Ashley Barnabas
- Translational Gastroenterology unit, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| | | |
Collapse
|
40
|
Saeki T, Yui S, Hirai T, Fujii T, Okada S, Kanamoto R. Ursodeoxycholic acid protects colon cancer HCT116 cells from deoxycholic acid-induced apoptosis by inhibiting apoptosome formation. Nutr Cancer 2012; 64:617-26. [PMID: 22497644 DOI: 10.1080/01635581.2012.669876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We previously demonstrated that ursodeoxycholic acid (UDC) requires prolonged (≥5 h) preincubation to exhibit effective protection of colon cancer HCT116 cells from deoxycholic acid (DC)-induced apoptosis. Although UDC diminished DC-mediated caspase-9 activation, cytochrome c release from the mitochondria was not inhibited, indicating that UDC acts on the steps of caspase-9 activation. In the present study, therefore, we investigated the effects of UDC on the factors involved in caspase-9 activation. We found that UDC had no significant effect on the expression of antiapoptotic XIAP. Furthermore, UDC did not affect the expression or release of proapoptotic Smac/DIABLO, or the association of XIAP and Smac/DIABLO. In contrast, association of Apaf-1 and caspase-9 stimulated by 500 μM DC was inhibited by UDC pretreatment. Although UDC caused remarkable activation of Akt/PKB, phosphatidylinositol-3-kinase (PI3K) inhibitor did not significantly reduce UDC-mediated cytoprotection. Furthermore, phosphorylation of threonine residues on caspase-9 after UDC pretreatment could not be detected. UDC-mediated cytoprotection was independent of the MAPK pathway, and cyclic AMP (cAMP) analogue did not inhibit DC-induced apoptosis. Our results indicate that UDC protects colon cancer cells from apoptosis induced by hydrophobic bile acids, by inhibiting apoptosome formation independently of the survival signals mediated by the PI3K, MAPK, or cAMP pathways.
Collapse
Affiliation(s)
- Tohru Saeki
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Ursodeoxycholic acid in patients with ulcerative colitis and primary sclerosing cholangitis for prevention of colon cancer: a meta-analysis. Indian J Gastroenterol 2012; 31:69-74. [PMID: 22528343 DOI: 10.1007/s12664-012-0175-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/16/2012] [Indexed: 02/07/2023]
Abstract
PURPOSE/AIM Colon cancer risk is high in patients with ulcerative colitis (UC) and primary sclerosing cholangitis (PSC). Ursodeoxycholic acid has been shown to have some promise as a chemopreventive agent. A meta-analysis was performed to compare the efficacy of ursodeoxycholic acid in the prevention of colonic neoplasia in patients with UC and PSC. METHODS Multiple databases were searched (January 2011). Studies examining the use of ursodeoxycholic acid vs. no ursodeoxycholic acid or placebo in adult patients with UC and PSC were included. Data were extracted in standard forms by two independent reviewers. Meta-analysis for the effect of ursodeoxycholic acid was performed by calculating pooled estimates of adenoma or colon cancer formation by odds ratio (OR) with random effects model. Heterogeneity was assessed by calculating the I (2) measure of inconsistency. RevMan 5 was utilized for statistical analysis. RESULTS Four studies (n = 281) met the inclusion criteria. The studies were of adequate quality. Ursodeoxycholic acid demonstrated no overall improvement in adenoma (OR 0.53; 95 % CI: 0.19-1.48, p = 0.23) or colon cancer occurrence (OR 0.50; 95 % CI: 0.18-1.43, p = 0.20) as compared to no ursodeoxycholic acid or placebo in patients with UC and PSC. CONCLUSION Ursodeoxycholic acid use in patients with UC and PSC does not appear to decrease the risk of adenomas or colon cancer.
Collapse
|
42
|
Tschirner A, von Haehling S, Palus S, Doehner W, Anker SD, Springer J. Ursodeoxycholic acid treatment in a rat model of cancer cachexia. J Cachexia Sarcopenia Muscle 2012; 3:31-6. [PMID: 22450540 PMCID: PMC3302987 DOI: 10.1007/s13539-011-0044-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/04/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cancer cachexia is characterized by loss of both adipose and skeletal muscle tissue and by an increased production of proinflammatory cytokines. Ursodeoxycholic acid (UDCA), a bile acid used for centuries in the treatment of liver disease, is known to confer anti-inflammatory and anti-apoptotic effects as well as beneficial effects on mitochondrial integrity and cell signaling. We hypothesized that UDCA ameliorates the wasting process in the Yoshida hepatoma tumor model. In addition, we sought to establish if UDCA exerts beneficial effects on survival in this model. METHODS AND RESULTS Forty-seven male rats were inoculated intraperitoneally with 10(8) Yoshida hepatoma AH-130 cells and treated with placebo or one of two different doses of UDCA, 25 or 100 mg/kg daily. Body weight, body composition, and activity indicators were measured over the course of study up to day 16. UDCA treatment had no effect on tumor growth, loss of body weight, and loss of fat mass. Compared with placebo, low-dose UDCA improved tissue loss in the lung (p = 0.022) and tended to reduce tissue loss in brown adipocytes (p = 0.06), gastrocnemius muscle (p = 0.06), extensor digitorum longus muscle (p = 0.09), and soleus muscle (p = 0.07). Compared with placebo, high-dose UDCA tended to reduce the loss of lean body mass (p = 0.06), lung tissue (p = 0.1), white adipose tissue (p = 0.11), and gastrocnemius muscle (p = 0.11). The activity and food intake were not altered in tumor-bearing rats by either dose of UDCA. Both doses tended to decrease the mortality rate in tumor-bearing rats, (hazard ratio (HR), 0.42; 95% confidence interval (CI), 0.17-1.04; p = 0.061 for low-dose UDCA; HR, 0.44; 95% CI, 0.18-1.05; p = 0.065 for high-dose UDCA). CONCLUSION UDCA treatment in the Yoshida hepatoma model showed a trend towards attenuation of tissue loss in animals with progressive weight loss in cancer cachexia. Tumor growth and activity indicators were not altered. Both doses of UDCA tended to reduce the mortality rates in tumor-bearing animals. Larger studies with longer follow-up are required to verify these findings.
Collapse
Affiliation(s)
- Anika Tschirner
- Applied Cachexia Research, Department of Cardiology; Charité Medical School; Berlin
- Center for Cardiovascular Research; Charité Medical School; Campus Mitte, Hessische Str. 3-4 10115 Berlin
| | - Stephan von Haehling
- Applied Cachexia Research, Department of Cardiology; Charité Medical School; Berlin
- Center for Cardiovascular Research; Charité Medical School; Campus Mitte, Hessische Str. 3-4 10115 Berlin
| | - Sandra Palus
- Applied Cachexia Research, Department of Cardiology; Charité Medical School; Berlin
- Center for Cardiovascular Research; Charité Medical School; Campus Mitte, Hessische Str. 3-4 10115 Berlin
| | - Wolfram Doehner
- Applied Cachexia Research, Department of Cardiology; Charité Medical School; Berlin
- Center for Stroke Research Berlin; Charité Medical School; Berlin
| | - Stefan D. Anker
- Applied Cachexia Research, Department of Cardiology; Charité Medical School; Berlin
- Centre for Clinical and Basic Research; IRCCS San Raffaele; Rome
| | - Jochen Springer
- Applied Cachexia Research, Department of Cardiology; Charité Medical School; Berlin
- Center for Cardiovascular Research; Charité Medical School; Campus Mitte, Hessische Str. 3-4 10115 Berlin
- Norwich Medical School; University of East Anglia; Norwich
| |
Collapse
|
43
|
Kang JH, Zhang WQ, Song W, Shen DY, Li SS, Tian L, Shi Y, Liang G, Xiong YX, Chen QX. Apoptosis Mechanism of Human Cholangiocarcinoma Cells Induced by Bile Extract from Crocodile. Appl Biochem Biotechnol 2011; 166:942-51. [DOI: 10.1007/s12010-011-9482-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 11/30/2011] [Indexed: 12/12/2022]
|
44
|
Zahiri HR, Perrone EE, Strauch ED. Bile salt supplementation acts via the farnesoid X receptor to alleviate lipopolysaccharide-induced intestinal injury. Surgery 2011; 150:480-9. [DOI: 10.1016/j.surg.2011.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 07/06/2011] [Indexed: 01/16/2023]
|
45
|
Subramanian V, Logan RF. Chemoprevention of colorectal cancer in inflammatory bowel disease. Best Pract Res Clin Gastroenterol 2011; 25:593-606. [PMID: 22122774 DOI: 10.1016/j.bpg.2011.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/11/2011] [Indexed: 02/07/2023]
Abstract
The risk of developing colorectal cancer is increased in patients with inflammatory bowel disease (IBD). Surveillance colonoscopy has not been shown to prolong survival and rates of interval cancer are reported to be high. Various chemopreventive agents have been clearly shown to reduce the risk of colorectal adenoma and cancer in the general population and the problems associated with colonoscopic surveillance have led to increasing interest in utilising chemopreventive strategies to reduce the risk of colorectal cancer in patients with inflammatory bowel disease as well. Continuing colonic inflammation has been shown to be important in the development of colorectal cancer and therefore anti-inflammatory agents have been considered potential chemopreventive agents. As present no agents have been shown to have indisputable chemopreventive activity in IBD but 5-ASAs and thiopurine analogues by reducing inflammation are likely to have some chemopreventive activity and will often be indicated for disease control. More studies are needed using agents such as aspirin and calcium which have been shown to be chemopreventive in sporadic colorectal neoplasia.
Collapse
|
46
|
Chemoprevention of colorectal cancer: a role for ursodeoxycholic acid, folate and hormone replacement treatment? Best Pract Res Clin Gastroenterol 2011; 25:555-68. [PMID: 22122771 DOI: 10.1016/j.bpg.2011.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 02/08/2023]
Abstract
Chemoprevention of colorectal cancer has been an intense focus of research for many years. Among the possible candidate agents, ursodeoxycholic acid, folate, and hormone replacement therapy have been recently investigated with conflicting data. Experimental evidence shows that UDCA, folate and HRT target critical molecular events important for colon carcinogenesis. In animal models of sporadic, familial and inflammatory-associated cancers, they have shown to reduce colonic neoplasms. Observational studies have shown compelling evidence of possible protective effects of all three agents. However, randomised-controlled studies have yielded disappointing results, raising the issues of possible harm rather than protective effect for some of them. In this review experimental and clinical data on UDCA, folate and HRT as potential chemopreventive agents are discussed.
Collapse
|
47
|
Chang X, Hou X, Pan J, Fang K, Wang L, Han J. Investigating the pathogenic role of PADI4 in oesophageal cancer. Int J Biol Sci 2011; 7:769-81. [PMID: 21698003 PMCID: PMC3119849 DOI: 10.7150/ijbs.7.769] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/05/2011] [Indexed: 11/22/2022] Open
Abstract
PADI4 post-translationally converts peptidylarginine to citrulline. PADI4 can disrupt the apoptotic process via the citrullination of histone H3 in the promoter of p53-target genes. The current study focused on PADI4 expression in various subtypes of oesophageal carcinoma (EC) by immunohistochemistry, western blotting and real time PCR. The study also investigated the effect of bile acid deoxycholate (DCA) on PADI4 expression in Eca-109 cells that originated from EC. Apoptosis and DCA-induced toxicity were analyzed by TUNEL, MTT assay and flow cytometry. Additionally, the present study investigated the correlation between single nucleotide polymorphism (SNP) in PADI4 gene and EC risk in Chinese population using Illumina GoldenGate assay. Compared with paraneoplastic tissues, the transcriptional and translational levels of PADI4 were significantly elevated in oesophageal squamous cell carcinoma (ESCC, n=9) and oesophageal adenocarcinoma (EAC, n=5) tissues. Immunolabeling detected expression of PADI4 in ESCC tissues (98.56%, n=139), EAC samples (87.5%, n=16) and oesophageal small cell undifferentiated carcinoma (91.7%, n=12) but not in normal tissues (0%, n=16). Furthermore, PADI4 levels is positively correlated with the pathological classification of ESCC (p=0.009). PADI4 expression levels were consistent with the number of apoptotic cells in the induced Eca-109 cells. rs10437048 [OR= 0.012831; 95% CI, 0.001746~0.094278; p=1.556×10-12] were significantly associated with decreased risk of EC, whereas rs41265997 [OR=12.7; 95% CI, 0.857077~33.207214; p=3.896×10-8] were significantly associated with increased risk of EC. rs41265997 in exon 3 of PADI4 gene is non-synonymous and converts ACG to ATG resulting in a threonine /methionine conversion at position 274 of the protein. Haplotypes GC that carries the variant alleles for rs2501796 and rs2477134 was significantly associated with increased risk of EC (frequency=0.085, p=0.0256, OR=2.7). The results suggest that PADI4 expression is related to the tumorigenic process of EC and the DCA-induced apoptosis. The PADI4 gene may be a valid EC susceptibility gene.
Collapse
Affiliation(s)
- Xiaotian Chang
- Research Center For Medicinal Biotechnology Center, Shandong Academy of Medicinal Sciences. National Laboratory for Biotech-Drugs Ministry of Health & Provincial Laboratory for Modern Medicine and Technology of Shandong, Jinan, P. R. China.
| | | | | | | | | | | |
Collapse
|
48
|
Culver EL, Chapman RW. Systematic review: management options for primary sclerosing cholangitis and its variant forms - IgG4-associated cholangitis and overlap with autoimmune hepatitis. Aliment Pharmacol Ther 2011; 33:1273-91. [PMID: 21501198 DOI: 10.1111/j.1365-2036.2011.04658.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) remains a challenging disease to manage. The main goals are prevention of disease progression and reduction of the increased cancer risk. AIMS To review the management strategies for PSC and its variant forms based on published studies. METHODS Publications were identified using Pubmed, Medline and Ovid search engines. RESULTS Distinguishing PSC from variants, such as IgG4-associated cholangitis, and overlap with autoimmune hepatitis is essential to guide treatment decisions. There is no proven efficacious medical treatment for PSC. Ursodeoxycholic acid has been disappointing in low and moderate doses, and potentially dangerous in higher doses, although its role and optimal dose in chemoprevention requires investigation. The novel bile acid, 24-norursodeoxycholic acid, has shown promise in mouse models; human trials are in progress. Dominant strictures are optimally managed by dilatation and stenting to relieve obstructive complications, although exclusion of biliary malignancy is essential. Liver transplantation is the only proven therapy for those with advanced disease. Cholangiocarcinoma remains the most unpredictable and feared complication. In highly selected groups, neo-adjuvant chemoradiation with liver transplantation seems promising, but requires further validation. Screening for inflammatory bowel disease and surveillance for colorectal carcinoma should not be overlooked. CONCLUSIONS The effective management of PSC and its variants is hindered by uncertainties regarding pathogenesis of disease and factors responsible for its progression. Genome studies may help to identify further targets for drug therapy and factors leading to malignant transformation.
Collapse
|
49
|
Viennot S, Deleporte A, Moussata D, Nancey S, Flourié B, Reimund JM. Colon cancer in inflammatory bowel disease: recent trends, questions and answers. ACTA ACUST UNITED AC 2010; 33 Suppl 3:S190-201. [PMID: 20117342 DOI: 10.1016/s0399-8320(09)73154-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with chronic colitis (ulcerative colitis or colonic Crohn's disease) have an increased risk of colorectal cancer (CRC). Although most of the molecular alterations reported in sporadic CRC have also been observed in colitis-associated CRC, they do not occur at the same timing and frequency, indicating a different pathophysiology. In particular, recent work highlighted the importance of chronic mucosal inflammation as a key factor favouring colorectal carcinogenesis in these patients. This may also be one of the reasons explaining the role of 5-aminosalicylates as chemopreventive agents for CRC in inflammatory bowel disease (IBD) patients with colonic involvement. Beside chemoprevention, colonoscopic screening and surveillance have been shown to be the cornerstone for CRC prevention and early detection in this particular patients' population. Periodic surveillance colonoscopy to detect dysplasia has been shown to decrease the mortality attributed to CRC. More recently, progress in imaging techniques increased our ability to identify dysplasia, and should probably now be considered to be an integral part of surveillance colonoscopy. In the future, further improvement of our knowledge of CRC biology, refinement of imaging techniques, as well as molecular discovery (e.g. identification of specific mutations in stool DNA extracts), might lead to develop more accurate diagnostic strategies to reduce the morbidity and mortality related to CRC in patients with ulcerative colitis or colonic Crohn's disease.
Collapse
Affiliation(s)
- S Viennot
- Centre Hospitalier Universitaire de Caen, Service d'Hépato-Gastroentérologie et Nutrition, Pôle Reins-Digestif-Nutrition, Hôpital Côte de Nacre, B.P. 95182, 14033 Caen cedex 9, France
| | | | | | | | | | | |
Collapse
|
50
|
Ha YH, Park DG. Effects of DCA on Cell Cycle Proteins in Colonocytes. JOURNAL OF THE KOREAN SOCIETY OF COLOPROCTOLOGY 2010; 26:254-9. [PMID: 21152226 PMCID: PMC2998009 DOI: 10.3393/jksc.2010.26.4.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 06/29/2010] [Indexed: 01/12/2023]
Abstract
Purpose Evidence that indicates bile acid is a promoter of colon cancer exists. Deoxycholic acid (DCA) modifies apoptosis or proliferation by affecting intracellular signaling and gene expression. However, because previous studies have been based on studies on colon cancer cell lines, the effect of DCA on normal colonocytes is unknown. Methods Normal colonocytes and Caco-2 and HCT116 cells were treated with 20 µM and 250 µM of DCA, and the effect of different concentrations of DCA was measured based on the expression of cell-cycle-related proteins by using Western blots. Results The expressions of CDK2 and cyclin D1 for different concentrations of DCA in normal colonocytes and colon cancer cells were similar, but the expressions of cyclin E and A were significantly different. In HCT116 colon cancer cells, the expression of cyclin E increased regardless of the DCA concentration, but in normal colonocytes and Caco-2 cells, the expression of cyclin E was not changed or decreased. In HCT116 colon cancer cells, the expression of cyclin A was not changed or decreased regardless of the DCA concentration, but in normal colonocytes and Caco-2 cells, the expression of cyclin A was increased at a DCA concentration of 20 µM. Conclusion The effect of DCA on stimulating cell proliferation suggests that DNA synthesis is stimulated by an increased expression of cyclin E in colon cancer cells. Our results suggest that a low dose of DCA induces cellular proliferation through increased expression of cyclin A and that a high dose of DCA induces decreased expression of cyclin E and CDK2 in normal colonocytes.
Collapse
Affiliation(s)
- Yun-Hyung Ha
- Department of Surgery, Dankook University School of Medicine, Cheonan, Korea
| | | |
Collapse
|