1
|
Chagas DB, Santos FDS, de Oliveira NR, Bohn TLO, Dellagostin OA. Recombinant Live-Attenuated Salmonella Vaccine for Veterinary Use. Vaccines (Basel) 2024; 12:1319. [PMID: 39771981 PMCID: PMC11680399 DOI: 10.3390/vaccines12121319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Vaccination is essential for maintaining animal health, with priority placed on safety and cost effectiveness in veterinary use. The development of recombinant live-attenuated Salmonella vaccines (RASVs) has enabled the construction of balanced lethal systems, ensuring the stability of plasmid vectors encoding protective antigens post-immunization. These vaccines are particularly suitable for production animals, providing long-term immunity against a range of bacterial, viral, and parasitic pathogens. This review summarizes the progress made in this field, with a focus on clinical trials demonstrating the efficacy and commercial potential of RASVs in veterinary medicine.
Collapse
Affiliation(s)
- Domitila Brzoskowski Chagas
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Francisco Denis Souza Santos
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
- Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande 96200-400, Rio Grande do Sul, Brazil
| | - Natasha Rodrigues de Oliveira
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Thaís Larré Oliveira Bohn
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| | - Odir Antônio Dellagostin
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas 96010-610, Rio Grande do Sul, Brazil (T.L.O.B.)
| |
Collapse
|
2
|
Abstract
INTRODUCTION Bacterial ghosts are intact bacterial cell envelopes that are emptied of their content by gentle biological or chemical poring methods. Ghost techniques increase the safety of the killed vaccines, while maintaining their antigenicity due to mild preparation procedures. Moreover, ghost-platforms may express and/or carry several antigens or plasmid-DNA encoding for protein epitopes. AREAS COVERED In this review, the development in ghost-vaccine production over the last 30 years is classified and discussed. The different applications of ghost-vaccines, how they trigger the immune system, their advantages and limitations are displayed. The phage-mediated lysis, molecular manipulation of the lysis-genes, and the biotechnological production of ghosts are described. The trials are classified according to the pattern of lysis and to the type of bacteria. Further subdivision includes chronological ordered application of the ghost as alternative-killed vaccine, recombinant antigen platform, plasmid DNA carrier, adjuvants, and dendritic cell inducer. Particular trials for specific pathogens or from distinct research schools are gathered. EXPERT OPINION Ghosts are highly qualified to act as immune-presenting platforms that express and/or carry several recombinant and DNA vaccines, as well as, being efficient alternative-killed vaccines. The coming years will show more molecular advances to develop ghost-production and to express more antigens.
Collapse
Affiliation(s)
- Ali M Batah
- Tropical Disease Research Center, University of Science and Technology , Sana'a, Yemen
| | - Tarek A Ahmad
- Morehouse School of Medicine , Atlanta, GA, USA.,Library Sector, Bibliotheca Alexandrina , Alexandria, Egypt
| |
Collapse
|
3
|
Issaro N, Wu F, Weng L, Zhou M, Fang Z, Huang S, Rajamanickam V, Liu M, Tian H, Li X, Jiang C. Induction of immune responses by a novel recombinant fusion protein of enterovirus A71 in BALB/c mice. Mol Immunol 2018; 105:1-8. [PMID: 30465931 DOI: 10.1016/j.molimm.2018.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/03/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
Abstract
Fusion protein technology is used in biotechnology and medical developments. In this study, recombinant fusion proteins from enterovirus A71 (EV-A71) subgenotype B5, Thailand were designed based two surface proteins (VP1 and VP2) and an internal protein (VP4), and named "VP0" (consisting of VP4-VP2) and "EV71" (consisting of VP4-VP2-VP1), respectively. The recombinant fusion proteins VP0 and EV71 were expressed in insect cells and successfully produced and secreted into the media. Both recombinant fusion proteins were shown to have immunogenic properties in BALB/c mice when formulated with Freund's complete/incomplete adjuvant (FA). Interestingly, EV71 formulated with FA- induced a level of IgG antibodies level similar to that induced by the recombinant protein VP1 formulated with FA (the positive control). Our results showed that VP1 alone is better at eliciting a strong cell-mediated immune response. Nontheless, EV71 formulated with FA was capable of inducing lymphocyte proliferation and increasing the cytokine-related mRNA expression levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and IL-10 in mice after immunization. Additionally, the number of CD4+ and CD8+ T lymphocyte cells after stimulation with purified EV71 in splenic cell culture showed highly specific CD4+ and CD8+ T-cell production. We suggest that EV71, which consists of VP4-VP2-VP1, could be used as the foundation for developing a novel recombinant fusion protein-based vaccine for EV-A71.
Collapse
Affiliation(s)
- Nipatha Issaro
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Fenfang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Lei Weng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Mi Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Zhaoxiang Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Sisi Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | | | - Min Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Haishan Tian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Xiaokun Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, PR China; Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, 325035, PR China.
| | - Chao Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, PR China; Biomedicine Collaborative Innovation Center, Wenzhou University, Wenzhou, 325035, PR China.
| |
Collapse
|
4
|
García-Meniño I, García V, Mora A, Díaz-Jiménez D, Flament-Simon SC, Alonso MP, Blanco JE, Blanco M, Blanco J. Swine Enteric Colibacillosis in Spain: Pathogenic Potential of mcr-1 ST10 and ST131 E. coli Isolates. Front Microbiol 2018; 9:2659. [PMID: 30455680 PMCID: PMC6230658 DOI: 10.3389/fmicb.2018.02659] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
This is a wide epidemiological study of 499 E. coli isolates recovered from 179 outbreaks of enteric colibacillosis from pig production farms in Spain during a period of 10 years. Most samples were of diarrheagenic cases occurred during the post-wean period (PWD) which showed to be significantly associated with ETEC (67%) followed by aEPEC (21.7%). On the contrary, aEPEC was more prevalent (60.3%) among diarrheas of suckling piglets, followed by ETEC (38.8%). STEC/ETEC or STEC were recovered in 11.3 and 0.9% of PWD and neonatal diarrhea, respectively. Detection of the F4 colonization factor was not significantly different between isolates recovered from neonatal pigs and those recovered post wean (40.5 versus 27.7%) while F18 was only present among PWD isolates (51.5% of ETEC, STEC, and STEC/ETEC isolates). We also found a high prevalence of resistance to colistin related to the presence of the mcr-1 gene (25.6% of the diarreagenic isolates). The characterization of 65 representative mcr-1 isolates showed that all were phenotypically resistant to colistin (>2 μg/ml), and most (61 of 65) multidrug-resistant (MDR). Six ETEC and one STEC mcr-1 isolates were also carriers of ESBL genes. In addition, other seven mcr-1 isolates harbored mcr-4 (three ETEC) and mcr-5 (two ETEC and two aEPEC) genes. In the phylogenetic analysis of the 65 mcr-1 diarrheagenic isolates we found that more than 50% (38 out of 65) belonged to A-ST10 Cplx and from those, 29 isolates showed the clonotype CH11-24. In this study, we also recovered 18 ST131 isolates including seven mcr-1 carriers. To the best of our knowledge, this would be the first report of ST131 mcr-1 isolation in pigs. Worryingly, the swine mcr-1 ST131 carriers also showed MDR, including to trimethoprim-sulfamethoxazole, tobramycin, gentamicin and ciprofloxacin. In the PFGE-macrorestriction comparison of clinical swine and human ST131, we found high similarities (≥85%) between two pig and two human ST131 isolates of virotype D5. Acquisition of mcr-1 by this specific clone means an increased risk due to its special feature of congregating virulence and resistance traits, together with its spread capability. Here we show a potential zoonotic swine source of ST131.
Collapse
Affiliation(s)
- Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Saskia C Flament-Simon
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - María Pilar Alonso
- Unidad de Microbiología, Hospital Universitario Lucus Augusti (HULA), Lugo, Spain
| | - Jesús E Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Miguel Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), Lugo, Spain
| |
Collapse
|
5
|
F18+ Escherichia coli flagellin expression in Salmonella has immunoadjuvant effects in a ghost vaccine candidate containing E. coli Stx2eB, FedF and FedA against porcine edema disease. Comp Immunol Microbiol Infect Dis 2018; 58:44-51. [DOI: 10.1016/j.cimid.2018.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
|