1
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
2
|
Zhang JM, Chen MJ, He JH, Li YP, Li ZC, Ye ZJ, Bao YH, Huang BJ, Zhang WJ, Kwan P, Mao YL, Qiao JD. Ketone Body Rescued Seizure Behavior of LRP1 Deficiency in Drosophila by Modulating Glutamate Transport. J Mol Neurosci 2022; 72:1706-1714. [PMID: 35668313 DOI: 10.1007/s12031-022-02026-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
LRP1, the low-density lipoprotein receptor 1, would be a novel candidate gene of epilepsy according to our bioinformatic results and the animal study. In this study, we explored the role of LRP1 in epilepsy and whether beta-hydroxybutyrate, the principal ketone body of the ketogenic diet, can treat epilepsy caused by LRP1 deficiency in drosophila. UAS/GAL4 system was used to establish different genotype models. Flies were given standard, high-sucrose, and ketone body food randomly. The bang-sensitive test was performed on flies and seizure-like behavior was assessed. In morphologic experiments, we found that LRP1 deficiency caused partial loss of the ellipsoidal body and partial destruction of the fan-shaped body. Whole-body and glia LRP1 defect flies had a higher seizure rate compared to the control group. Ketone body decreased the seizure rate in behavior test in all LRP1 defect flies, compared to standard and high sucrose diet. Overexpression of glutamate transporter gene Eaat1 could mimic the ketone body effect on LRP1 deficiency flies. This study demonstrated that LRP1 defect globally or in glial cells or neurons could induce epilepsy in drosophila. The ketone body efficaciously rescued epilepsy caused by LRP1 knockdown. The results support screening for LRP1 mutations as discriminating conduct for individuals who require clinical attention and further clarify the mechanism of the ketogenic diet in epilepsy, which could help epilepsy patients make a precise treatment case by case.
Collapse
Affiliation(s)
- Jin-Ming Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ming-Jie Chen
- The Third Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiong-Hui He
- The Third Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Ya-Ping Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Cai Li
- The First Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Zi-Jing Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yong-Hui Bao
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Bing-Jun Huang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Wen-Jie Zhang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ping Kwan
- School of Veterinary Science, University of Sydney, Sydney, Australia
| | - Yu-Ling Mao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jing-da Qiao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
USE OF KETOGENIC DIET THERAPY IN EPILEPSY WITH MITOCHONDRIAL DYSFUNCTION: A SYSTEMATIC AND CRITICAL REVIEW. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the development of molecular techniques over time more than %60 of epilepsy has associated with mitochondrial (mt) dysfunction. Ketogenic diet (KD) has been used in the treatment of epilepsy since the 1920s. Aim. To evaluate the evidence behind KD in mt dysfunction in epilepsy. Methods. Databases PubMed, Google Scholar and MEDLINE were searched in an umbrella approach to 12 March 2021 in English. To identify relevant studies specific search strategies were devised for the following topics: (1) mitochondrial dysfunction (2) epilepsy (3) KD treatment. Results. From 1794 papers, 36 articles were included in analysis: 16 (%44.44) preclinical studies, 11 (%30.55) case reports, 9 (%25) clinical studies. In all the preclinic studies, KD regulated the number of mt profiles, transcripts of metabolic enzymes and encoding mt proteins, protected the mice against to seizures and had an anticonvulsant mechanism. Case reports and clinical trials have reported patients with good results in seizure control and mt functions, although not all of them give good results as well as preclinical. Conclusion. Healthcare institutions, researchers, neurologists, health promotion organizations, and dietitians should consider these results to improve KD programs and disease outcomes for mt dysfunction in epilepsy.
Collapse
|
4
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
5
|
The ketogenic diet as a therapeutic intervention strategy in mitochondrial disease. Int J Biochem Cell Biol 2021; 138:106050. [PMID: 34298163 DOI: 10.1016/j.biocel.2021.106050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
Classical mitochondrial disease (MD) represents a group of complex metabolic syndromes primarily linked to dysfunction of the mitochondrial ATP-generating oxidative phosphorylation (OXPHOS) system. To date, effective therapies for these diseases are lacking. Here we discuss the ketogenic diet (KD), being a high-fat, moderate protein, and low carbohydrate diet, as a potential intervention strategy. We concisely review the impact of the KD on bioenergetics, ROS/redox metabolism, mitochondrial dynamics and mitophagy. Next, the consequences of the KD in (models of) MD, as well as KD adverse effects, are described. It is concluded that the current experimental evidence suggests that the KD can positively impact on mitochondrial bioenergetics, mitochondrial ROS/redox metabolism and mitochondrial dynamics. However, more information is required on the bioenergetic consequences and mechanistic mode-of-action aspects of the KD at the cellular level and in MD patients.
Collapse
|
6
|
Senik MH, Abu IF, Fadhullah W. Analysis of K ATP Channels Opening Probability of Hippocampus Cells Treated with Kainic Acid. Malays J Med Sci 2021; 28:15-26. [PMID: 33679216 PMCID: PMC7909348 DOI: 10.21315/mjms2021.28.1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/12/2020] [Indexed: 01/14/2023] Open
Abstract
Background Kainic acid (KA)-induced seizures may be a valuable tool in the assessment of anti-epileptic drug efficacy in complex partial seizures. This study investigated the effects of KA on ATP-sensitive K+ (KATP) channels opening probability (NPo), which plays a crucial role in neuronal activities. Methods For the optimisation and validation protocol, β-cells were plated onto 35 mm plastic petri dishes and maintained in RPMI-1640 media supplemented with 10 mM glucose, 10% FCS and 25 mM of N-2-hydroxyethylpiperazine-N-ethanesulfonic acid (HEPES). The treatment effects of 10 mM glucose and 30 μM fluoxetine on KATP channels NPo of β-cells were assessed via cell-attached patch-clamp recordings. For hippocampus cell experiments, hippocampi were harvested from day 17 of maternal Lister-hooded rat foetus, and then transferred to a Ca2+ and Mg2+-free HEPES-buffered Hank's salt solution (HHSS). The dissociated cells were cultured and plated onto a 25 mm round cover glasses coated with poly-d-lysine (0.1 mg/mL) in a petri dish. The KATP channels NPo of hippocampus cells when perfused with 1 mM and 10 mM of KA were determined. Results NPo of β-cells showed significant decreasing patterns (P < 0.001) when treated with 10 mM glucose 0.048 (0.027) as well as 30 μM fluoxetine 0.190 (0.141) as compared to basal counterpart. In hippocampus cell experiment, a significant increase (P < 0.001) in mean NPo 2.148 (0.175) of neurons when applied with 1 mM of KA as compared to basal was observed. Conclusion The two concentrations of KA used in the study exerted contrasting effects toward the mean of NPo. It is hypothesised that KA at lower concentration (1 mM) opens more KATP channels, leading to hyperpolarisation of the neurons, which may prevent neuronal hyper excitability. No effect was shown in 10 mM KA treatment, suggesting that only lower than 10 mM KA produced significant changes in KATP channels. This implies further validation of KA concentration to be used in the future.
Collapse
Affiliation(s)
- Mohd Harizal Senik
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.,School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Widad Fadhullah
- School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
7
|
López‐Gambero AJ, Rodríguez de Fonseca F, Suárez J. Energy sensors in drug addiction: A potential therapeutic target. Addict Biol 2021; 26:e12936. [PMID: 32638485 DOI: 10.1111/adb.12936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023]
Abstract
Addiction is defined as the repeated exposure and compulsive seek of psychotropic drugs that, despite the harmful effects, generate relapse after the abstinence period. The psychophysiological processes associated with drug addiction (acquisition/expression, withdrawal, and relapse) imply important alterations in neurotransmission and changes in presynaptic and postsynaptic plasticity and cellular structure (neuroadaptations) in neurons of the reward circuits (dopaminergic neuronal activity) and other corticolimbic regions. These neuroadaptation mechanisms imply important changes in neuronal energy balance and protein synthesis machinery. Scientific literature links drug-induced stimulation of dopaminergic and glutamatergic pathways along with presence of neurotrophic factors with alterations in synaptic plasticity and membrane excitability driven by metabolic sensors. Here, we provide current knowledge of the role of molecular targets that constitute true metabolic/energy sensors such as AMPK, mTOR, ERK, or KATP in the development of the different phases of addiction standing out the main brain regions (ventral tegmental area, nucleus accumbens, hippocampus, and amygdala) constituting the hubs in the development of addiction. Because the available treatments show very limited effectiveness, evaluating the drug efficacy of AMPK and mTOR specific modulators opens up the possibility of testing novel pharmacotherapies for an individualized approach in drug abuse.
Collapse
Affiliation(s)
- Antonio Jesús López‐Gambero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga Universidad de Málaga Málaga Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), UGC Salud Mental Hospital Regional Universitario de Málaga Málaga Spain
| |
Collapse
|
8
|
Hrizo SL, Eicher SL, Myers TD, McGrath I, Wodrich APK, Venkatesh H, Manjooran D, Swoger S, Gagnon K, Bruskin M, Lebedev MV, Zheng S, Vitantonio A, Kim S, Lamb ZJ, Vogt A, Ruzhnikov MRZ, Palladino MJ. Identification of protein quality control regulators using a Drosophila model of TPI deficiency. Neurobiol Dis 2021; 152:105299. [PMID: 33600953 PMCID: PMC7993632 DOI: 10.1016/j.nbd.2021.105299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Triosephosphate isomerase (TPI) deficiency (Df) is a rare recessive metabolic disorder that manifests as hemolytic anemia, locomotor impairment, and progressive neurodegeneration. Research suggests that TPI Df mutations, including the "common" TPIE105Dmutation, result in reduced TPI protein stability that appears to underlie disease pathogenesis. Drosophila with the recessive TPIsugarkill allele (a.k.a. sgk or M81T) exhibit progressive locomotor impairment, neuromuscular impairment and reduced longevity, modeling the human disorder. TPIsugarkill produces a functional protein that is degraded by the proteasome. Molecular chaperones, such as Hsp70 and Hsp90, have been shown to contribute to the regulation of TPIsugarkill degradation. In addition, stabilizing the mutant protein through chaperone modulation results in improved TPI deficiency phenotypes. To identify additional regulators of TPIsugarkill degradation, we performed a genome-wide RNAi screen that targeted known and predicted quality control proteins in the cell to identify novel factors that modulate TPIsugarkill turnover. Of the 430 proteins screened, 25 regulators of TPIsugarkill were identified. Interestingly, 10 proteins identified were novel, previously undescribed Drosophila proteins. Proteins involved in co-translational protein quality control and ribosome function were also isolated in the screen, suggesting that TPIsugarkill may undergo co-translational selection for polyubiquitination and proteasomal degradation as a nascent polypeptide. The proteins identified in this study may reveal novel pathways for the degradation of a functional, cytosolic protein by the ubiquitin proteasome system and define therapeutic pathways for TPI Df and other biomedically important diseases.
Collapse
Affiliation(s)
- Stacy L Hrizo
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Biology, Slippery Rock University of Pennsylvania, Slippery Rock, PA 16057, USA
| | - Samantha L Eicher
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Tracey D Myers
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ian McGrath
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andrew P K Wodrich
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Hemanth Venkatesh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel Manjooran
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sabrina Swoger
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kim Gagnon
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Matthew Bruskin
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maria V Lebedev
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sherry Zheng
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ana Vitantonio
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sungyoun Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zachary J Lamb
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Andreas Vogt
- Department of Computational & Systems Biology, Drug Discovery Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maura R Z Ruzhnikov
- Department of Neurology, Stanford University School of Medicine, Stanford, CA 94304, USA; Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
9
|
Lee DC, Vali K, Baldwin SR, Divino JN, Feliciano JL, Fequiere JR, Fernandez MA, Frageau JC, Longo FK, Madhoun SS, Mingione V P, O’Toole TR, Ruiz MG, Tanner GR. Dietary Supplementation With the Ketogenic Diet Metabolite Beta-Hydroxybutyrate Ameliorates Post-TBI Aggression in Young-Adult Male Drosophila. Front Neurosci 2019; 13:1140. [PMID: 31736687 PMCID: PMC6833482 DOI: 10.3389/fnins.2019.01140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI), caused by repeated concussive head trauma can induce chronic traumatic encephalopathy (CTE), a neurodegenerative disease featuring behavioral symptoms ranging from cognitive deficits to elevated aggression. In a Drosophila model, we used a high-impact trauma device (Katzenberger et al., 2013, 2015) to induce TBI-like symptoms and to study post-TBI behavioral outcomes. Following TBI, aggression in banged male flies was significantly elevated as compared with that in unbanged flies. These increases in aggressive behavior were not the result of basal motility changes, as measured by a negative geotaxis assay. In addition, the increase in post-TBI aggression appeared to be specific to concussive trauma: neither cold exposure nor electric shock-two alternate types of trauma-significantly elevated aggressive behavior in male-male pairs. Various forms of dietary therapy, especially the high-fat, low-carbohydrate ketogenic diet (KD), have recently been explored for a wide variety of neuropathies. We thus hypothesized that putatively neuroprotective dietary interventions might be able to suppress post-traumatic elevations in aggressive behavior in animals subjected to head-trauma-inducing strikes, or "bangs". We supplemented a normal high-carbohydrate Drosophila diet with the KD metabolite beta-hydroxybutyrate (β-HB)-a ketone body (KB). Banged flies raised on a KB-supplemented diet exhibited a marked reduction in aggression, whereas aggression in unbanged flies was equivalent whether dieted with KB supplements or not. Pharmacological blockade of the ATP-sensitive potassium (KATP) channel abrogated KB effects reducing post-TBI aggression while pharmacological activation mimicked them, suggesting a mechanism by which KBs act in this model. KBs did not significantly extend lifespan in banged flies, but markedly extended lifespan in unbanged flies. We have thus developed a functional model for the study of post-TBI elevations of aggression. Further, we conclude that dietary interventions may be a fruitful avenue for further exploration of treatments for TBI- and CTE-related cognitive-behavioral symptoms.
Collapse
Affiliation(s)
- Derek C. Lee
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, United States
| | - Krishna Vali
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, United States
| | - Shane R. Baldwin
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Jeffrey N. Divino
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Justin L. Feliciano
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Jesus R. Fequiere
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Mirella A. Fernandez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - James C. Frageau
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, United States
| | - Frank K. Longo
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Salaheddine S. Madhoun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Pasquale Mingione V
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Timothy R. O’Toole
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, United States
| | - Maria G. Ruiz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Geoffrey R. Tanner
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
- The Connecticut Institute for the Brain and Cognitive Sciences, Storrs, CT, United States
| |
Collapse
|
10
|
Chen Z, Zhang F, Xu H. Human mitochondrial DNA diseases and Drosophila models. J Genet Genomics 2019; 46:201-212. [DOI: 10.1016/j.jgg.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
|
11
|
Fogle KJ, Smith AR, Satterfield SL, Gutierrez AC, Hertzler JI, McCardell CS, Shon JH, Barile ZJ, Novak MO, Palladino MJ. Ketogenic and anaplerotic dietary modifications ameliorate seizure activity in Drosophila models of mitochondrial encephalomyopathy and glycolytic enzymopathy. Mol Genet Metab 2019; 126:439-447. [PMID: 30683556 PMCID: PMC6536302 DOI: 10.1016/j.ymgme.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Seizures are a feature not only of the many forms of epilepsy, but also of global metabolic diseases such as mitochondrial encephalomyopathy (ME) and glycolytic enzymopathy (GE). Modern anti-epileptic drugs (AEDs) are successful in many cases, but some patients are refractory to existing AEDs, which has led to a surge in interest in clinically managed dietary therapy such as the ketogenic diet (KD). This high-fat, low-carbohydrate diet causes a cellular switch from glycolysis to fatty acid oxidation and ketone body generation, with a wide array of downstream effects at the genetic, protein, and metabolite level that may mediate seizure protection. We have recently shown that a Drosophila model of human ME (ATP61) responds robustly to the KD; here, we have investigated the mechanistic importance of the major metabolic consequences of the KD in the context of this bioenergetics disease: ketogenesis, reduction of glycolysis, and anaplerosis. We have found that reduction of glycolysis does not confer seizure protection, but that dietary supplementation with ketone bodies or the anaplerotic lipid triheptanoin, which directly replenishes the citric acid cycle, can mimic the success of the ketogenic diet even in the presence of standard carbohydrate levels. We have also shown that the proper functioning of the citric acid cycle is crucial to the success of the KD in the context of ME. Furthermore, our data reveal that multiple seizure models, in addition to ATP61, are treatable with the ketogenic diet. Importantly, one of these mutants is TPIsugarkill, which models human glycolytic enzymopathy, an incurable metabolic disorder with severe neurological consequences. Overall, these studies reveal widespread success of the KD in Drosophila, further cementing its status as an excellent model for studies of KD treatment and mechanism, and reveal key insights into the therapeutic potential of dietary therapy against neuronal hyperexcitability in epilepsy and metabolic disease.
Collapse
Affiliation(s)
- Keri J Fogle
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Amber R Smith
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sidney L Satterfield
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alejandra C Gutierrez
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - J Ian Hertzler
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Caleb S McCardell
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Joy H Shon
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zackery J Barile
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Molly O Novak
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
12
|
Fogle KJ, Mobini CL, Paseos AS, Palladino MJ. Sleep and circadian defects in a Drosophila model of mitochondrial encephalomyopathy. Neurobiol Sleep Circadian Rhythms 2019; 6:44-52. [PMID: 30868108 PMCID: PMC6411073 DOI: 10.1016/j.nbscr.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial encephalomyopathies (ME) are complex, incurable diseases characterized by severe bioenergetic distress that can affect the function of all major organ systems but is especially taxing to neuromuscular tissues. Animal models of MEs are rare, but the Drosophila ATP61 mutant is a stable, well-characterized genetic line that accurately models progressive human mitochondrial diseases such as Maternally-Inherited Leigh Syndrome (MILS), Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP), and Familial Bilateral Striatal Necrosis (FBSN). While it is established that this model exhibits important hallmarks of ME, including excess cellular and mitochondrial reactive oxygen species, shortened lifespan, muscle degeneration, and stress-induced seizures, it is unknown whether it exhibits defects in sleep or circadian function. This is a clinically relevant question, as many neurological and neurodegenerative diseases are characterized by such disturbances, which can exacerbate other symptoms and worsen quality of life. Since Drosophila is highly amenable to sleep and circadian studies, we asked whether we could detect disease phenotypes in the circadian behaviors of ATP61. Indeed, we found that day-time and night-time activity and sleep are altered through disease progression, and that circadian patterns are disrupted at both the behavioral and neuronal levels. These results establish ATP61 as an important model of sleep and circadian disruption in ME that can be studied mechanistically at the molecular, cellular, and behavioral level to uncover underlying pathophysiology and test novel therapies. A Drosophila model of mitochondrial disease (ATP61) displays altered sleep patterns. ATP61 sleep quantity and consolidation are reduced in advanced disease. ATP61 is behaviorally arrhythmic under conditions of constant darkness. Selected neurons of the circadian circuit display altered daily firing rates in ATP61.
Collapse
Affiliation(s)
- Keri J. Fogle
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherina L. Mobini
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Abygail S. Paseos
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael J. Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Corresponding author at: Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Markantone DM, Towheed A, Crain AT, Collins JM, Celotto AM, Palladino MJ. Protein coding mitochondrial-targeted RNAs rescue mitochondrial disease in vivo. Neurobiol Dis 2018; 117:203-210. [PMID: 29908326 DOI: 10.1016/j.nbd.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial encephalomyopathies (MEs) result from mutations in mitochondrial genes critical to oxidative phosphorylation. Severe and untreatable ME results from mutations affecting each endogenous mitochondrial encoded gene, including all 13 established protein coding genes. Effective techniques to manipulate mitochondrial genome are limited and targeted mitochondrial protein expression is currently unavailable. Here we report the development of a mitochondrial-targeted RNA expression (mtTRES) vector capable of protein expression within mitochondria (mtTRESPro). We demonstrate that mtTRESPro expressed RNAs are targeted to mitochondria and are capable of being translated using EGFP encoded constructs in vivo. We additionally test mtTRESPro constructs encoding wild type ATP6 for their ability to rescue an established ATP61Drosophila model of ME. Genetic rescue is examined including tests with co-expression of mitochondrial targeted translational inhibitors TLI-NCL::ATP6 RNAs that function to reduce expression of the endogenous mutant protein. The data demonstrate allotopic RNA expression of mitochondrial targeted wild type ATP6 coding RNAs are sufficient to partially rescue a severe and established animal model of ME but only when combined with a method to inhibit mutant protein expression, which likely competes for incorporation into complex V.
Collapse
Affiliation(s)
- Desiree M Markantone
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Atif Towheed
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Aaron T Crain
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jessica M Collins
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alicia M Celotto
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
14
|
O'Connor-Giles KM, Zhang B, Simpson JH, Wu CF. The neurogenetics of Drosophila: the Ganetzky legacy. J Neurogenet 2016; 30:149-151. [PMID: 27868460 DOI: 10.1080/01677063.2016.1254629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kate M O'Connor-Giles
- a Guest Editor, Laboratories of Genetics & Cell and Molecular Biology , University of Wisconsin-Madison , Madison , WI , USA
| | - Bing Zhang
- b Guest Editor, Division of Biological Sciences , University of Missouri , Columbia , MO , USA
| | - Julie H Simpson
- c Guest Editor, Department Molecular, Cellular and Developmental Biology , University of California , Santa Barbara , CA , USA
| | - Chun-Fang Wu
- d Editor-in-Chief, Department of Biology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|