1
|
Sun G, Qi X, Wang W, Li X, Luo C, Bai S, Xu S, Zhong X, Huang C, Zhu X, Huang Z. High Mobility Group Box 1/Toll-like Receptor 4 Signaling Increases GABRB3 Expression in Alcohol Exposure. Neuropsychiatr Dis Treat 2021; 17:1725-1732. [PMID: 34103917 PMCID: PMC8179828 DOI: 10.2147/ndt.s306242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Prefrontal cortex (PFC) and striatal neurotransmitter homeostasis is affected by alcohol dependence. In this study, the microarray dataset from the Gene Expression Omnibus (GEO) database were downloaded. The prefrontal and striatum data were cross-analyzed to reveal the co-effects of alcohol dependence on the two brain regions of mice. METHODS The GSE123114 microarray profile was downloaded from the GEO database, and differentially expressed genes (DEGs) between the two groups were acquired by GEO2R. KEGG analyses were performed to identify the pivotal pathways of these DEGs. Key differential gene expressions and their mechanism associated with alcohol exposure were investigated by an intraperitoneal alcohol model. RESULTS A total of 13 overlapping DEGs from the PFC and striatal datasets of the GSE123114 microarray profile were identified, and they were significantly enriched in the morphine addiction pathway. The transcript levels and protein expression of Gabrb3 were consistent with the microarray data both in the PFC and striatum. The transcript levels of HMGB1, TLR4, TNFα and IL-1β were upregulated in the PFC and striatum of mice in the alcohol group. The HMGB1 inhibitor decreased Gabrb3 transcript and protein levels as well as TNFα and IL-1β transcript levels both in the PFC and striatum in the intraperitoneal alcohol model mice. DISCUSSION Through the reanalysis of GSE123114 microarray profile, we found that Gabrb3 is a key gene associated with alcohol exposure. In further experiments, our findings suggest that alcohol exposure modulates Gabrb3 expression through the HMGB1/TLR4 pathway. Moreover, inflammation-associated factors, such as IL-1β and TNFα, may be related to the HMGB1/TLR4-mediated regulation of GABRB3 expression in alcohol exposure.
Collapse
Affiliation(s)
- Guangtao Sun
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Xunzhong Qi
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Wei Wang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Xintong Li
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| | - Chunhua Luo
- Department of Laboratory Medicine, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Hubei, People's Republic of China
| | - Sunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Shaohua Xu
- Department of Laboratory Medicine, Yichang Central People's Hospital, The First College of Clinical Medical Science, Three Gorges University, Hubei, People's Republic of China
| | - Xiaogang Zhong
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chenglong Huang
- Department of Laboratory Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaofeng Zhu
- Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Zuoyi Huang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, People's Republic of China
| |
Collapse
|
2
|
Martins de Carvalho L, Fonseca PAS, Paiva IM, Damasceno S, Pedersen ASB, da Silva E Silva D, Wiers CE, Volkow ND, Brunialti Godard AL. Identifying functionally relevant candidate genes for inflexible ethanol intake in mice and humans using a guilt-by-association approach. Brain Behav 2020; 10:e01879. [PMID: 33094916 PMCID: PMC7749619 DOI: 10.1002/brb3.1879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Gene prioritization approaches are useful tools to explore and select candidate genes in transcriptome studies. Knowing the importance of processes such as neuronal activity, intracellular signal transduction, and synapse plasticity to the development and maintenance of compulsive ethanol drinking, the aim of the present study was to explore and identify functional candidate genes associated with these processes in an animal model of inflexible pattern of ethanol intake. To do this, we applied a guilt-by-association approach, using the GUILDify and ToppGene software, in our previously published microarray data from the prefrontal cortex (PFC) and striatum of inflexible drinker mice. We then tested some of the prioritized genes that showed a tissue-specific pattern in postmortem brain tissue (PFC and nucleus accumbens (NAc)) from humans with alcohol use disorder (AUD). In the mouse brain, we prioritized 44 genes in PFC and 26 in striatum, which showed opposite regulation patterns in PFC and striatum. The most prioritized of them (i.e., Plcb1 and Prkcb in PFC, and Dnm2 and Lrrk2 in striatum) were associated with synaptic neuroplasticity, a neuroadaptation associated with excessive ethanol drinking. The identification of transcription factors among the prioritized genes suggests a crucial role for Irf4 in the pattern of regulation observed between PFC and striatum. Lastly, the differential transcription of IRF4 and LRRK2 in PFC and nucleus accumbens in postmortem brains from AUD compared to control highlights their involvement in compulsive ethanol drinking in humans and mice.
Collapse
Affiliation(s)
- Luana Martins de Carvalho
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA.,Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Pablo A S Fonseca
- Laboratório de Genética Humana e Médica, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil.,University of Guelph, Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, Guelph, Ontario, Canada
| | - Isadora M Paiva
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Samara Damasceno
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Agatha S B Pedersen
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Daniel da Silva E Silva
- Laboratory on the Neurobiology of Compulsive Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Corinde E Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, USA.,National Institute on Drug Abuse, Bethesda, National Institute of Health, Bethesda, MD, USA
| | - Ana L Brunialti Godard
- Laboratório de Genética Animal e Humana, Departamento de Genética, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
3
|
The Emerging Role of LHb CaMKII in the Comorbidity of Depressive and Alcohol Use Disorders. Int J Mol Sci 2020; 21:ijms21218123. [PMID: 33143210 PMCID: PMC7663385 DOI: 10.3390/ijms21218123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Depressive disorders and alcohol use disorders are widespread among the general population and are significant public health and economic burdens. Alcohol use disorders often co-occur with other psychiatric conditions and this dual diagnosis is called comorbidity. Depressive disorders invariably contribute to the development and worsening of alcohol use disorders, and vice versa. The mechanisms underlying these disorders and their comorbidities remain unclear. Recently, interest in the lateral habenula, a small epithalamic brain structure, has increased because it becomes hyperactive in depression and alcohol use disorders, and can inhibit dopamine and serotonin neurons in the midbrain reward center, the hypofunction of which is believed to be a critical contributor to the etiology of depressive disorders and alcohol use disorders as well as their comorbidities. Additionally, calcium/calmodulin-dependent protein kinase II (CaMKII) in the lateral habenula has emerged as a critical player in the etiology of these comorbidities. This review analyzes the interplay of CaMKII signaling in the lateral habenula associated with depressive disorders and alcohol use disorders, in addition to the often-comorbid nature of these disorders. Although most of the CaMKII signaling pathway's core components have been discovered, much remains to be learned about the biochemical events that propagate and link between depression and alcohol abuse. As the field rapidly advances, it is expected that further understanding of the pathology involved will allow for targeted treatments.
Collapse
|
4
|
The effect of curcumin and exercise rehabilitation on liver paraoxonase-1 and NF-kβ gene expression in the rat induced by forced drinking of ethanol. Clin Exp Hepatol 2020; 6:49-54. [PMID: 32166124 PMCID: PMC7062120 DOI: 10.5114/ceh.2020.93057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/27/2019] [Indexed: 11/27/2022] Open
Abstract
Aim of the study Binge ethanol drinking causes liver damage and decreased paraoxonase-1 (PON-1) gene expression. On the other hand, regular physical activity and curcumin consumption as non-invasive interventions can have liver protective effects through enhancing antioxidant defense, and improving PON-1 and NF-kβ (nuclear factor kappa B) gene expression. The aim of this study was to investigate the interactive effect of exercise rehabilitation and curcumin consumption on hepatocyte damage as well as NF-kβ and PON-1 gene expression in rats. Material and methods Fifty-six male Wistar rats were randomly selected and equally divided into seven groups: dextrose-control (Dext-Con), ethanol-control (Eth-Con), ethanol-saline (Eth-sal), ethanol-DMSO (Eth-DMSO), ethanol-curcumin (Eth-Cur), ethanol-swimming training (Eth-SWT) and ethanol-SWT + curcumin (Eth-SWT + Cur). After four days of the binge drinking protocol followed by six days of quitting, the interventions of SWT and curcumin (50 mg/kg) were employed for 14 days. Afterwards, the rats’ liver tissues were collected and sent to the laboratory for biochemical assays. Results The interaction of SWT and curcumin caused an increase in PON-1 gene expression (p = 0.02). In addition, curcumin consumption (p = 0.003) and its interaction with SWT (p = 0.004) resulted in a reduction in NF-kβ gene expression. Also, liver tissue damage was observed in the Eth-Con group compared to other groups. Conclusions The combination of curcumin and SWT may be used to reduce the side effects of binge ethanol drinking and improve recovery in the quitting period.
Collapse
|
5
|
Advances in behavioral animal models of alcohol use disorder. Alcohol 2019; 74:73-82. [PMID: 30424979 DOI: 10.1016/j.alcohol.2018.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 01/03/2023]
Abstract
Alcohol use disorder (AUD) is a multifaceted neuropsychiatric disease that combines behavioral, psychosocial, and neurobiological aspects. Over the previous decade, animal models have advanced in modeling the major psychological constructs that characterize AUD. These advances pave the road for more sophisticated behavioral models that capture addiction-related aspects, such as alcohol craving, compulsive seeking and intake, dependence, and relapse. In this review, we survey the recent progress in behavioral animal modeling of five aspects of AUD: alcohol consumption, dependence, and seeking; compulsivity in alcohol intake despite adverse outcomes; vulnerability and resilience factors in alcohol addiction; relapse despite treatment; and relapse prevention by manipulating alcohol-associated memory reconsolidation. These advances represent a general attempt to grasp the complexity and multidimensional nature of AUD, and to focus on behavioral characteristics that better reflect and model this disorder.
Collapse
|