1
|
Guo H, Li J, Dong Y, Gao H, Wang P. CLDN6 inhibited cellular biological function of nonsmall cell lung cancer cells through suppressing aerobic glycolysis via the RIP1/ASK1/JNK axis. J Biochem Mol Toxicol 2024; 38:e23682. [PMID: 38462752 DOI: 10.1002/jbt.23682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/25/2023] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Claudin-6 (CLDN6) has been extensively studied in different tumors to date. However, in the case of nonsmall cell lung cancer (NSCLC), CLDN6 has a largely unknown role and molecular mechanism. We detected the expression of CLDN6 in NSCLC tissues and cells using reverse transcription-quantitative polymerase chain reaction (PCR) and western blot assays. A gain-of-function experiment was performed to evaluate the biological effects of CLDN6 on NSCLC cell behaviors. Methylation-specific PCR was utilized to detect the DNA methylation of CLDN6 gene promoter region. The interaction of CLDN6 and receptor interacting protein 1 (RIP1) was determined by coimmunoprecipitation assay. Furthermore, the modulation of CLDN6 on RIP1/apoptosis signal-regulating kinase 1 (ASK1)/c-Jun N-terminal kinase (JNK) axis was confirmed. The results showed that in NSCLC tissues and cells, CLDN6 expression level was declined, and was associated with a high level of DNA methylation. CLDN6 overexpression suppressed the viability, invasion, migration, and promoted cell apoptosis. Besides, the enhanced expression of CLDN6 reduced the glycolysis and the dysfunction of mitochondrial respiration of NSCLC cells. Mechanistic investigation confirmed that CLDN6 interacted with RIP1 and inhibited cellular biological function of NSCLC cells via RIP1/ASK1/JNK axis. Besides, CLDN6 overexpression inhibited tumor growth in vivo. In conclusion, CLDN6 inhibited NSCLC cell proliferation through inactivating aerobic glycolysis via the RIP1/ASK1/JNK axis.
Collapse
Affiliation(s)
- Hua Guo
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Jianying Li
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Yu Dong
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Humei Gao
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Peng Wang
- Department of Respiratory and Critical Care Medicine, Xi'an Central Hospital, The Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
2
|
Dong Y, Xu W, Qi D, Qu H, Jin Q, Sun M, Wang X, Quan C. CLDN6 inhibits colorectal cancer proliferation dependent on restraining p53 ubiquitination via ZO-1/PTEN axis. Cell Signal 2023; 112:110930. [PMID: 37852424 DOI: 10.1016/j.cellsig.2023.110930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers in the world. Abnormal proliferation is a chief characteristic of cancer and is the initiation of CRC progression. As an important component of tight junctions, CLDN6 regulates the proliferation of multiple tumors. Our previous study showed that CLDN6 was low expressed in CRC, and CLDN6 overexpression inhibited CRC proliferation. However, the specific mechanism of how CLDN6 works remains unclear. This research aimed to reveal the relationship between CLDN6 and clinical features, as well as the molecular mechanism by which CLDN6 inhibited CRC proliferation. We found that low expression of CLDN6 was associated with pathological grade and prognosis of CRC patients, and confirmed that CLDN6 inhibited CRC proliferation dependent on p53. Mechanically, we elucidated that CLDN6 regulated ubiquitination to enhance p53 stability and nuclear import by PTEN/AKT/MDM2 pathway. Through the PDZ-binding motif (PBM), CLDN6 bound to ZO-1 to interact with PTEN, and regulate AKT/MDM2 pathway. Collectively, our data enriched the theoretical basis for CLDN6 as a potential biomarker for diagnosis, therapy and prognosis of CRC.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Huinan Qu
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China
| | - Xudong Wang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin, China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun 130021, Jilin, China.
| |
Collapse
|
3
|
Romero-Estrada JH, Montaño LF, Rendón-Huerta EP. Binding of YY1/CREB to an Enhancer Region Triggers Claudin 6 Expression in H. pylori LPS-Stimulated AGS Cells. Int J Mol Sci 2023; 24:13974. [PMID: 37762277 PMCID: PMC10531490 DOI: 10.3390/ijms241813974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Aberrant expression of the tight junction protein claudin 6 (CLDN6) is a hallmark of gastric cancer progression. Its expression is regulated by the cAMP response element-binding protein (CREB). In gastric cancer induced by Helicobacter pylori (H. pylori) there is no information regarding what transcription factors induce/upregulate the expression of CLDN6. We aimed to identify whether CREB and Yin Yang1 (YY1) regulate the expression of CLDN6 and the site where they bind to the promoter sequence. Bioinformatics analysis, H. pylori lipopolysaccharide (LPS), YY1 and CREB silencing, Western blot, luciferase assays, and chromatin immunoprecipitation experiments were performed using the stomach gastric adenocarcinoma cell line AGS. A gen reporter assay suggested that the initial 2000 bp contains the regulatory sequence associated with CLDN6 transcription; the luciferase assay demonstrated three different regions with transcriptional activity, but the -901 to -1421 bp region displayed the maximal transcriptional activity in response to LPS. Fragment 1279-1421 showed CREB and, surprisingly, YY1 occupancy. Sequential Chromatin Immunoprecipitation (ChIP) experiments confirmed that YY1 and CREB interact in the 1279-1421 region. Our results suggest that CLDN6 expression is regulated by the binding of YY1 and CREB in the 901-1421 enhancer, in which a non-described interaction of YY1 with CREB was established in the 1279-1421 region.
Collapse
Affiliation(s)
| | - Luis F. Montaño
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Erika P. Rendón-Huerta
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| |
Collapse
|
4
|
Dong Y, Jin Q, Sun M, Qi D, Qu H, Wang X, Quan C. CLDN6 inhibits breast cancer metastasis through WIP-dependent actin cytoskeleton-mediated autophagy. J Exp Clin Cancer Res 2023; 42:68. [PMID: 36935496 PMCID: PMC10026481 DOI: 10.1186/s13046-023-02644-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/11/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND As a breast cancer suppressor gene, CLDN6 overexpression was found to inhibit breast cancer metastasis in our previous studies, but the specific mechanism remains unclear. This study aimed to clarify the role and mechanism of CLDN6 in inhibiting breast cancer metastasis. METHODS Western blot, immunofluorescence and transmission electron microscopy were performed to detect autophagy. Wound healing, transwell assays and lung metastasis mouse models were used to examine breast cancer metastasis. Phalloidin staining and immunofluorescent staining were used to observe actin cytoskeleton. mRNA seq, RT-PCR, western blot, chromatin immunoprecipitation, dual luciferase reporter assay, co-immunoprecipitation and immunofluorescence were performed to define the molecular mechanism. The expression levels and clinical implication of CLDN6, WIP and LC3 in breast cancer tissues were evaluated using immunohistochemistry. RESULTS We demonstrated that CLDN6 inhibited breast cancer metastasis through autophagy in vitro and vivo. We unraveled a novel mechanism that CLDN6 regulated autophagy via WIP-dependent actin cytoskeleton assembly. Through its PDZ-binding motif, overexpressed CLDN6 interacted with JNK and upregulated JNK/c-Jun pathway. C-Jun promoted WIP expression at the transcriptional level. Notably, we observed c-Jun transcriptionally upregulated CLDN6 expression, and there was a positive feedback loop between CLDN6 and JNK/c-Jun. Finally, we found that CLDN6, WIP and LC3 expression correlated with each other, and WIP expression was significantly associated with lymph node metastasis of breast cancer patients. CONCLUSIONS The data provide a new insight into the inhibitory effects of CLDN6-mediated autophagy on breast cancer metastasis, and revealed the new mechanism of CLDN6 regulating autophagy through WIP-dependent actin cytoskeleton. Our findings enrich the theoretical basis for CLDN6 as a potential biomarker for breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yuan Dong
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Qiu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Minghao Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, China.
| |
Collapse
|
5
|
Zhou W, Yu T, Hua Y, Hou Y, Ding Y, Nie H. Effects of Hypoxia on Respiratory Diseases: Perspective View of Epithelial Ion Transport. Am J Physiol Lung Cell Mol Physiol 2022; 323:L240-L250. [PMID: 35819839 DOI: 10.1152/ajplung.00065.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The balance of gas exchange and lung ventilation is essential for the maintenance of body homeostasis. There are many ion channels and transporters in respiratory epithelial cells, including epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator, and some transporters. These ion channels/transporters maintain the capacity of liquid layer on the surface of respiratory epithelial cells, and provide an immune barrier for the respiratory system to clear off foreign pathogens. However, in some harmful external environment and/or pathological conditions, the respiratory epithelium is prone to hypoxia, which would destroy the ion transport function of the epithelium and unbalance the homeostasis of internal environment, triggering a series of pathological reactions. Many respiratory diseases associated with hypoxia manifest an increased expression of hypoxia-inducible factor-1, which mediates the integrity of the epithelial barrier and affects epithelial ion transport function. It is important to study the relationship between hypoxia and ion transport function, whereas the mechanism of hypoxia-induced ion transport dysfunction in respiratory diseases is not clear. This review focuses on the relationship of hypoxia and respiratory diseases, as well as dysfunction of ion transport and tight junctions in respiratory epithelial cells under hypoxia.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
6
|
Hou Y, Ding Y, Du D, Yu T, Zhou W, Cui Y, Nie H. Airway Basal Cells Mediate Hypoxia-Induced EMT by Increasing Ribosome Biogenesis. Front Pharmacol 2021; 12:783946. [PMID: 34955855 PMCID: PMC8696177 DOI: 10.3389/fphar.2021.783946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/08/2021] [Indexed: 01/11/2023] Open
Abstract
Excessive secretion of airway mucus and fluid accumulation are the common features of many respiratory diseases, which, in turn, induce cell hypoxia in the airway epithelium, resulting in epithelial–mesenchymal transition (EMT) and ultimately fibrosis. However, the mechanisms of EMT induced by hypoxia in the airway are currently unclear. To mimic the status of edematous fluid retention in the airway, we cultured primary mouse tracheal epithelial cells (MTECs) in a liquid–liquid interface (LLI) mode after full differentiation in a classic air–liquid interface (ALI) culture system. The cell hypoxia was verified by the physical characteristics and lactate production in cultured medium as well as HIF expression in MTECs cultured by LLI mode. EMT was evidenced and mainly mediated by basal cells, supported by flow cytometry and immunofluorescence assay. The differently expressed genes of basal and other airway epithelial cells were found to be enriched in the ribosome by our analysis of an MTEC single-cell RNA sequencing data set and Myc, the global regulator of ribosome biogenesis was identified to be highly expressed in basal cells. We next separated basal cells from bulk MTECs by flow cytometry, and the real-time PCR results showed that ribosome biogenesis was significantly upregulated in basal cells, whereas the inhibition of ribosome biogenesis alleviated the phosphorylation of the mammalian target of rapamycin/AKT and abrogated hypoxia-induced EMT in MTECs. Collectively, these observations strongly suggest that basal cells in the airway epithelium may mediate the process of hypoxia-induced EMT, partly through enhancing ribosome biogenesis.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Danni Du
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Qu H, Jin Q, Quan C. CLDN6: From Traditional Barrier Function to Emerging Roles in Cancers. Int J Mol Sci 2021; 22:ijms222413416. [PMID: 34948213 PMCID: PMC8705207 DOI: 10.3390/ijms222413416] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023] Open
Abstract
Claudins (CLDNs) are the most important tight junction proteins, which are mainly expressed in endothelial cells or epithelial cells in a tissue-specific manner. As a member of the CLDNs family, CLDN6 is highly expressed in fetal tissues such as the stomach, pancreas, lung, and kidney, but is not expressed in corresponding adult tissues. The expression of CLDN6 is regulated by a variety of factors, including but not limited to stimuli and transcription factors, DNA methylation, and post-translational modifications. CLDN6 has been found to have a key role in the formation of barriers, especially the lung epithelial barrier and the epidermal permeability barrier (EPB). Importantly, the roles of CLDN6 in cancers have gained focus and are being investigated in recent years. Strong evidence indicates that the altered expression of CLDN6 is linked to the development of various cancers. Malignant phenotypes of tumors affected by CLDN6 include proliferation and apoptosis, migration and invasion, and drug resistance, which are regulated by CLDN6-mediated key signaling pathways. Given the important role in tumors and its low or no expression in normal tissues, CLDN6 is an ideal target for tumor therapy. This review aims to provide an overview of the structure and regulation of CLDN6, and its traditional barrier function, with a special emphasis on its emerging roles in cancers, including its impact on the malignant phenotypes, signal-modulating effects, the prognosis of tumor patients, and clinical applications in cancers.
Collapse
|
8
|
Dos Santos Arcas C, Lin-Wang HT, Umeda IIK, de Sousa MG, Utiyama DMO, de Padua Mansur A, Macchione M, Hirata MH, Nakagawa NK. Smoking load reduction is insufficient to downregulate miR-301b, a lung cancer promoter. Sci Rep 2020; 10:21112. [PMID: 33273694 PMCID: PMC7713348 DOI: 10.1038/s41598-020-78242-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Several circulating miRNAs identified in the plasma of smokers have been implicated as promoters of nasopharyngeal and lung carcinoma. To investigate the plasma profile of miRNAs in subjects who reduces the number of smoked cigarettes and who quit after six months. We accompanied 28 individuals enrolled in a Smoking Cessation Program over 6 months. At Baseline, clinical characteristics, co-morbidities, and smoking history were similar among subjects. After 6 months, two groups were defined: who successfully quitted smoking (named "quitters", n = 18, mean age 57 years, 11 male) and who reduced the number of cigarettes smoked (20-90%) but failed to quit smoking (named "smokers", n = 10, mean age 52 years, 3 male). No significant clinical changes were observed between groups at baseline and after a 6-month period, however, quitters showed significant downregulations in seven miRNAs at baseline: miR-17 (- 2.90-fold, p = 0.029), miR-20a (- 3.80-fold, p = 0.021); miR-20b (- 4.71-fold, p = 0.027); miR-30a (- 3.95-fold, p = 0.024); miR-93 (- 3.63-fold, p = 0.022); miR-125a (- 1.70-fold, p = 0.038); and miR-195 (- 5.37-fold, p = 0.002), and after a 6-month period in 6 miRNAs: miR-17 (- 5.30-fold, p = 0.012), miR-20a (- 2.04-fold, p = 0.017), miR-20b (- 5.44-fold, p = 0.017), miR-93 (- 4.00-fold, p = 0.041), miR-101 (- 4.82-fold, p = 0.047) and miR-125b (- 3.65-fold, p = 0.025). Using time comparisons, only quitters had significant downregulation in miR-301b (- 2.29-fold, p = 0.038) after 6-month. Reductions in the number of smoked cigarettes was insufficient to change the plasma profile of miRNA after 6 months. Only quitting smoking (100% reduction) significantly downregulated miR-301b related to hypoxic conditions, promotion of cell proliferation, decreases in apoptosis, cancer development, and progression as increases in radiotherapy and chemotherapy resistance.
Collapse
Affiliation(s)
- Camila Dos Santos Arcas
- Department of Physiotherapy, LIM-54, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 room 1150, São Paulo, São Paulo, 01246-930, Brazil
| | - Hui Tzu Lin-Wang
- Dante Pazzanese Institute of Cardiology São Paulo State, São Paulo, Brazil
| | - Iracema Ioco Kikuchi Umeda
- Department of Physiotherapy, LIM-54, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 room 1150, São Paulo, São Paulo, 01246-930, Brazil
- Dante Pazzanese Institute of Cardiology São Paulo State, São Paulo, Brazil
| | | | | | - Antonio de Padua Mansur
- Department of Cardiopneumology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mariangela Macchione
- Department of Pathology, LIM05, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Naomi Kondo Nakagawa
- Department of Physiotherapy, LIM-54, Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 room 1150, São Paulo, São Paulo, 01246-930, Brazil.
| |
Collapse
|
9
|
Developing a link between toxicants, claudins and neural tube defects. Reprod Toxicol 2018; 81:155-167. [DOI: 10.1016/j.reprotox.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
10
|
Lewis JB, Bodine JS, Gassman JR, Muñoz SA, Milner DC, Dunaway TM, Egbert KM, Monson TD, Broberg DS, Arroyo JA, Reynolds PR. Transgenic up-regulation of Claudin-6 decreases fine diesel particulate matter (DPM)-induced pulmonary inflammation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18179-18188. [PMID: 29696536 DOI: 10.1007/s11356-018-1985-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Claudin-6 (Cldn6) is a tetraspanin transmembrane protein that contributes to tight junctional complexes and has been implicated in the maintenance of lung epithelial barriers. In the present study, we tested the hypothesis that genetic up-regulation of Cldn-6 influences inflammation in mice exposed to short-term environmental diesel particulate matter (DPM). Mice were subjected to ten exposures of nebulized DPM (PM2.5) over a period of 20 days via a nose-only inhalation system (Scireq, Montreal, Canada). Using real-time RT-PCR, we discovered that the Cldn6 gene was up-regulated in control mice exposed to DPM and in lung-specific transgenic mice that up-regulate Cldn-6 (Cldn-6 TG). Interestingly, DPM did not further enhance Cldn-6 expression in Cldn-6 TG mice. DPM caused increased cell diapedesis into bronchoalveolar lavage fluid (BALF) from control mice; however, Cldn-6 TG mice had less total cells and PMNs in BALF following DPM exposure. Because Cldn-6 TG mice had diminished cell diapedesis, other inflammatory intermediates were screened to characterize the impact of increased Cldn-6 on inflammatory signaling. Cytokines that mediate inflammatory responses including TNF-α and IL-1β were differentially regulated in Cldn6 TG mice and controls following DPM exposure. These results demonstrate that epithelial barriers organized by Cldn-6 mediate, at least in part, diesel-induced inflammation. Further work may show that Cldn-6 is a key target in understanding pulmonary epithelial gateways exacerbated by environmental pollution.
Collapse
Affiliation(s)
- Joshua B Lewis
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Jared S Bodine
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Jason R Gassman
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Samuel Arce Muñoz
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Dallin C Milner
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Todd M Dunaway
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Kaleb M Egbert
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Troy D Monson
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Dallin S Broberg
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Juan A Arroyo
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA
| | - Paul R Reynolds
- Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| |
Collapse
|