1
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
2
|
He S, Liu R, Luo Q, Song G. Tensile Overload Injures Human Alveolar Epithelial Cells through YAP/F-Actin/MAPK Signaling. Biomedicines 2023; 11:1833. [PMID: 37509472 PMCID: PMC10376431 DOI: 10.3390/biomedicines11071833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Explosion shockwaves can generate overloaded mechanical forces and induce lung injuries. However, the mechanism of lung injuries caused by tensile overload is still unclear. METHODS Flow cytometry was used to detect the apoptosis of human alveolar epithelial cells (BEAS-2B) induced by tensile overload, and cell proliferation was detected using 5-ethynyl-2'-deoxyuridine (EdU). Immunofluorescence and Western blot analysis were used to identify the tensile overload on the actin cytoskeleton, proteins related to the mitogen-activated protein kinase (MAPK) signal pathway, and the Yes-associated protein (YAP). RESULTS Tensile overload reduced BEAS-2B cell proliferation and increased apoptosis. In terms of the mechanism, we found that tensile overload led to the depolymerization of the actin cytoskeleton, the activation of c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase 1/2 (ERK1/2), and the upregulation of YAP expression. Jasplakinolide (Jasp) treatment promoted the polymerization of the actin cytoskeleton and reduced the phosphorylation of tension-overload-activated JNK and ERK1/2 and the apoptosis of BEAS-2B cells. Moreover, the inhibition of the JNK and ERK1/2 signaling pathways, as well as the expression of YAP, also reduced apoptosis caused by tensile overload. CONCLUSION Our study establishes the role of the YAP/F-actin/MAPK axis in tensile-induced BEAS-2B cell injury and proposes new strategies for the treatment and repair of future lung injuries.
Collapse
Affiliation(s)
| | | | | | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China; (S.H.); (R.L.); (Q.L.)
| |
Collapse
|
3
|
Wang Y, Fang X, Yang Y, Chen L, Xiong W, Song L, Li B, Zhou T, Yu Y, Yang X, Shu H, Yuan S, Yao S, Shang Y. Death-Associated Protein Kinase 1 Promotes Alveolar Epithelial Cell Apoptosis and Ventilator-Induced Lung Injury Through P53 Pathway. Shock 2022; 57:140-150. [PMID: 34265832 DOI: 10.1097/shk.0000000000001831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Mechanical stretch-induced alveolar epithelial cell (AEC) apoptosis participates in the onset of ventilator-induced lung injury (VILI). In this study, we explored whether death-associated protein kinase 1 (DAPK1) mediated cyclic stretch (CS)-induced AEC apoptosis and VILI though P53 pathway. MATERIALS AND METHODS AEC apoptosis was induced by CS using the FX-5000T Flexercell Tension Plus system. C57BL/6 mouse received high tidal volume ventilation to build VILI model. DAPK1 inhibitor, P53 inhibitor, or DAPK1 plasmid was used to regulate the expression of DAPK1 and P53, respectively. Flow cytometery was performed to assay cell apoptosis and the changes of mitochondrial membrane potential (MMP); immunoblotting was adopted to analyze related protein expression. The binding of related proteins was detected by coimmunoprecipitation; AEC apoptosis in vivo was determined by immunohistochemistry assay. RESULTS CS promoted AEC apoptosis, increased DAPK1 and P53 expression, and induced the binding of DAPK1 and P53; inhibition of DAPK1 or P53 reduced CS-induced AEC apoptosis, suppressed the expression of Bax, increased Bcl-2 level, and stabilized MMP; AEC apoptosis and the level of P53 were both increased after overexpressing of DAPK1. Moreover, DAPK1 plasmid transfection also promoted the expression of Bax and the change of MMP, but decreased the level of Bcl-2. Inhibition of DAPK1 or P53 in vivo alleviated high tidal volume ventilation-induced AEC apoptosis and lung injury. CONCLUSIONS DAPK1 contributes to AEC apoptosis and the onset of VILI though P53 and its intrinsic pro-apoptotic pathway. Inhibition of DAPK1 or P53 alleviates high tidal volume ventilation-induced lung injury and AEC apoptosis.
Collapse
Affiliation(s)
- Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiangzhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xiong
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Zhou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Yu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Activation of the M3AChR and Notch1/HSF1 Signaling Pathway by Choline Alleviates Angiotensin II-Induced Cardiomyocyte Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9979706. [PMID: 34504645 PMCID: PMC8423579 DOI: 10.1155/2021/9979706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
Angiotensin II- (Ang II-) induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure. Choline exerts cardioprotective effects; however, its effects on Ang II-induced cardiomyocyte apoptosis are unclear. In this study, the role and underlying mechanism of choline in regulating Ang II-induced cardiomyocyte apoptosis were investigated using a model of cardiomyocyte apoptosis, which was induced by exposing neonatal rat cardiomyocytes to Ang II (10−6 M, 48 h). Choline promoted heat shock transcription factor 1 (HSF1) nuclear translocation and the intracellular domain of Notch1 (NICD) expression. Consequently, choline attenuated Ang II-induced increases in mitochondrial reactive oxygen species (mtROS) and promotion of proapoptotic protein release from mitochondria, including cytochrome c, Omi/high-temperature requirement protein A2, and second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low P. The reversion of these events attenuated Ang II-induced increases in cardiomyocyte size and numbers of terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling-positive cells, presumably via type 3 muscarinic acetylcholine receptor (M3AChR). Indeed, downregulation of M3AChR or Notch1 blocked choline-mediated upregulation of NICD and nuclear HSF1 expression, as well as inhibited mitochondrial apoptosis pathway and cardiomyocyte apoptosis, indicating that M3AChR and Notch1/HSF1 activation confer the protective effects of choline. In vivo studies were performed in parallel, in which rats were infused with Ang II for 4 weeks to induce cardiac apoptosis. The results showed that choline alleviated cardiac remodeling and apoptosis of Ang II-infused rats in a manner related to activation of the Notch1/HSF1 pathway, consistent with the in vitro findings. Taken together, our results reveal that choline impedes oxidative damage and cardiomyocyte apoptosis by activating M3AChR and Notch1/HSF1 antioxidant signaling, and suggest a novel role for the Notch1/HSF1 signaling pathway in the modulation of cardiomyocyte apoptosis.
Collapse
|
5
|
Iron deposition-induced ferroptosis in alveolar type II cells promotes the development of pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166204. [PMID: 34175430 DOI: 10.1016/j.bbadis.2021.166204] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Ferroptosis is a newly discovered type of regulated cell death, characterized by the iron-dependent accumulation of lipid reactive oxygen species, which has been implicated in numerous human diseases. However, its role in pulmonary fibrosis, a fatal lung disease with unknown etiology, is largely unknown. Here, we investigated the role of ferroptosis in pulmonary fibrosis. We found a large amount of iron deposition in the lung tissue of patients with pulmonary fibrosis. We observed ferroptosis in alveolar type II (ATII) cells, fibrotic lung tissues of BLM-induced pulmonary fibrosis mice. BLM-induced increase in iron level was accompanied by pathological changes, collagen deposition, and ferroptosis in ATII cells, indicating iron deposition-induced ferroptosis, which promoted the development of pulmonary fibrosis. Moreover, deferoxamine (DFO) completely prevented the pro-fibrosis effects of BLM by reducing iron deposition and ferroptosis in ATII cells. Genes associated with intracellular iron metabolism and homeostasis, such as transferrin receptor 1, divalent metal transporter 1, and ferroportin-1, and showed abnormal expression levels in animal tissues and lung epithelial MLE-12 cells, which responded to BLM stimulation. Overall, we demonstrated that BLM-induced iron deposition in MLE-12 cells is prone to both mitochondrial dysfunction and ferroptosis and that DFO reverses this phenotype. In the future, understanding the role of ferroptosis may shed new light on the etiology of pulmonary fibrosis. Ferroptosis inhibitors or genetic engineering of ferroptosis-related genes might offer potential targets to treat pulmonary fibrosis.
Collapse
|
6
|
Nascimento CP, Maia LP, Alves PT, Paula ATD, Cunha Junior JP, Abdallah VOS, Ferreira DMDLM, Goulart LR, Azevedo VMGDO. Invasive mechanical ventilation and biomarkers as predictors of bronchopulmonary dysplasia in preterm infants. J Pediatr (Rio J) 2021; 97:280-286. [PMID: 32407675 PMCID: PMC9432278 DOI: 10.1016/j.jped.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVES To evaluate the impact of invasive mechanical ventilation associated with two serum inflammatory cytokines and clinical indicators, on the second day of life, as predictors of bronchopulmonary dysplasia in very low birth weight preterm infants. It was hypothesized that the use of invasive mechanical ventilation in the first hours of life is associated with biomarkers that may predict the chances of preterm infants to develop bronchopulmonary dysplasia. METHODS Prospective cohort of 40 preterm infants with gestational age <34 weeks and birth weight <1500 g. The following were analyzed: clinical variables; types of ventilator support used (there is a higher occurrence of bronchopulmonary dysplasia when oxygen supplementation is performed by long periods of invasive mechanical ventilation); hospitalization time; quantification of two cytokines (granulocyte and macrophage colony stimulating factor [GM-CSF] and eotaxin) in blood between 36 and 48 h of life. The preterm infants were divided in two groups: with and without bronchopulmonary dysplasia. RESULTS The GM-CSF levels presented a significantly higher value in the bronchopulmonary dysplasia group (p = 0.002), while eotaxin presented higher levels in the group without bronchopulmonary dysplasia (p = 0.02). The use of continuous invasive mechanical ventilation was associated with increased ratios between GM-CSF and eotaxin (100% sensitivity and 80% specificity; receiver operating characteristic area = 0.9013, CI = 0.7791-1.024, p < 0.0001). CONCLUSIONS The duration of invasive mechanical ventilation performed in the first 48 h of life in the very low birth weight infants is a significant clinical predictor of bronchopulmonary dysplasia. The use of continuous invasive mechanical ventilation was associated with increased ratios between GM-CSF and eotaxin, suggesting increased lung injury and consequent progression of the disease.
Collapse
Affiliation(s)
- Camila Piqui Nascimento
- Universidade Federal de Uberlândia, Programa de Pós-Graduação em Ciências da Saúde, Uberlândia, MG, Brazil
| | - Larissa Prado Maia
- Universidade Federal de Uberlândia, Instituto Nacional de Ciência e Tecnologia - Teranóstica e Nanobiotecnologia (INCT-TeraNano), Laboratório de Nanobiotecnologia, Uberlândia, MG, Brazil
| | - Patrícia Terra Alves
- Universidade Federal de Uberlândia, Instituto Nacional de Ciência e Tecnologia - Teranóstica e Nanobiotecnologia (INCT-TeraNano), Laboratório de Nanobiotecnologia, Uberlândia, MG, Brazil
| | - Aline Teodoro de Paula
- Universidade Federal de Uberlândia, Instituto Nacional de Ciência e Tecnologia - Teranóstica e Nanobiotecnologia (INCT-TeraNano), Laboratório de Nanobiotecnologia, Uberlândia, MG, Brazil
| | - Jair Pereira Cunha Junior
- Universidade Federal de Uberlândia, Departamento de Imunologia, Laboratório de Imunoquímica e Imunotecnologia, Uberlândia, MG, Brazil
| | | | | | - Luiz Ricardo Goulart
- Universidade Federal de Uberlândia, Programa de Pós-Graduação em Ciências da Saúde, Uberlândia, MG, Brazil; Universidade Federal de Uberlândia, Instituto Nacional de Ciência e Tecnologia - Teranóstica e Nanobiotecnologia (INCT-TeraNano), Laboratório de Nanobiotecnologia, Uberlândia, MG, Brazil
| | - Vivian Mara Gonçalves de Oliveira Azevedo
- Universidade Federal de Uberlândia, Programa de Pós-Graduação em Ciências da Saúde, Uberlândia, MG, Brazil; Universidade Federal de Uberlândia, Faculdade de Educação Física e Fisioterapia, Uberlândia, MG, Brazil.
| |
Collapse
|
7
|
Death-associated Protein Kinase 1 Mediates Ventilator-induced Lung Injury in Mice by Promoting Alveolar Epithelial Cell Apoptosis. Anesthesiology 2020; 133:905-918. [PMID: 32930731 DOI: 10.1097/aln.0000000000003464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Alveolar epithelial cell apoptosis is implicated in the onset of ventilator-induced lung injury. Death-associated protein kinase 1 (DAPK1) is associated with cell apoptosis. The hypothesis was that DAPK1 participates in ventilator-induced lung injury through promoting alveolar epithelial cell apoptosis. METHODS Apoptosis of mouse alveolar epithelial cell was induced by cyclic stretch. DAPK1 expression was altered (knockdown or overexpressed) in vitro by using a small interfering RNA or a plasmid, respectively. C57/BL6 male mice (n = 6) received high tidal volume ventilation to establish a lung injury model. Adeno-associated virus transfection of short hairpin RNA and DAPK1 inhibitor repressed DAPK1 expression and activation in lungs, respectively. The primary outcomes were alveolar epithelial cell apoptosis and lung injury. RESULTS Compared with the control group, the 24-h cyclic stretch group showed significantly higher alveolar epithelial cell apoptotic percentage (45 ± 4% fold vs. 6 ± 1% fold; P < 0.0001) and relative DAPK1 expression, and this group also demonstrated a reduced apoptotic percentage after DAPK1 knockdown (27 ± 5% fold vs. 53 ± 8% fold; P < 0.0001). A promoted apoptotic percentage in DAPK1 overexpression was observed without stretching (49 ± 6% fold vs. 14 ± 3% fold; P < 0.0001). Alterations in B-cell lymphoma 2 and B-cell lymphoma 2-associated X are associated with DAPK1 expression. The mice subjected to high tidal volume had higher DAPK1 expression and alveolar epithelial cell apoptotic percentage in lungs compared with the low tidal volume group (43 ± 6% fold vs. 4 ± 2% fold; P < 0.0001). Inhibition of DAPK1 through adeno-associated virus infection or DAPK1 inhibitor treatment appeared to be protective against lung injury with reduced lung injury score, resolved pulmonary inflammation, and repressed alveolar epithelial cell apoptotic percentage (47 ± 4% fold and 48 ± 6% fold; 35 ± 5% fold and 34 ± 4% fold; P < 0.0001, respectively). CONCLUSIONS DAPK1 promotes the onset of ventilator-induced lung injury by triggering alveolar epithelial cell apoptosis through intrinsic apoptosis pathway in mice. EDITOR’S PERSPECTIVE
Collapse
|
8
|
Pereira-Fantini PM, Pang B, Byars SG, Oakley RB, Perkins EJ, Dargaville PA, Davis PG, Nie S, Williamson NA, Ignjatovic V, Tingay DG. Preterm Lung Exhibits Distinct Spatiotemporal Proteome Expression at Initiation of Lung Injury. Am J Respir Cell Mol Biol 2020; 61:631-642. [PMID: 30995072 DOI: 10.1165/rcmb.2019-0084oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The development of regional lung injury in the preterm lung is not well understood. This study aimed to characterize time-dependent and regionally specific injury patterns associated with early ventilation of the preterm lung using a mass spectrometry-based proteomic approach. Preterm lambs delivered at 124-127 days gestation received 15 or 90 minutes of mechanical ventilation (positive end-expiratory pressure = 8 cm H2O, Vt = 6-8 ml/kg) and were compared with unventilated control lambs. At study completion, lung tissue was taken from standardized nondependent and dependent regions, and assessed for lung injury via histology, quantitative PCR, and proteomic analysis using Orbitrap-mass spectrometry. Ingenuity pathway analysis software was used to identify temporal and region-specific enrichments in pathways and functions. Apoptotic cell numbers were ninefold higher in nondependent lung at 15 and 90 minutes compared with controls, whereas proliferative cells were increased fourfold in the dependent lung at 90 minutes. The relative gene expression of lung injury markers was increased at 90 minutes in nondependent lung and unchanged in gravity-dependent lung. Within the proteome, the number of differentially expressed proteins was fourfold higher in the nondependent lung than the dependent lung. The number of differential proteins increased over time in both lung regions. A total of 95% of enriched canonical pathways and 94% of enriched cellular and molecular functions were identified only in nondependent lung tissue from the 90-minute ventilation group. In conclusion, complex injury pathways are initiated within the preterm lung after 15 minutes of ventilation and amplified by continuing ventilation. Injury development is region specific, with greater alterations within the proteome of nondependent lung.
Collapse
Affiliation(s)
| | | | - Sean G Byars
- Department of Clinical Pathology.,Melbourne Integrative Genomics
| | | | | | - Peter A Dargaville
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Peter G Davis
- Neonatal Research, and.,Department of Obstetrics and Gynaecology, and.,The Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Shuai Nie
- Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics
| | - David G Tingay
- Neonatal Research, and.,Department of Paediatrics.,Department of Neonatology, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Liang GP, Xu J, Cao LL, Zeng YH, Chen BX, Yang J, Zhang ZW, Kang Y. Piezo1 induced apoptosis of type II pneumocytes during ARDS. Respir Res 2019; 20:118. [PMID: 31186017 PMCID: PMC6558715 DOI: 10.1186/s12931-019-1083-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/24/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The mechanisms of lung injury in acute respiratory distress syndrome (ARDS) are not well understood.Piezo1 was recently identified as a mechanotransduction protein. The present study found the expression of Piezo1 in type II pneumocytes and investigated its role in mediating ARDS-related lung injury. METHODS Sprague-Dawley rats were used to establish an ARDS model, the expression of Piezo1,lung injuries, apoptosis as well as calcium influx were assessed. RESULTS Piezo1 was expressed in type II pneumocytes as shown by immunofluorescence staining and expression was increased in the ARDS model. Knockdown of Piezo1 reduced apoptosis which was related to the elevation of Bcl-2.Calcium influx played a vital role in Piezo1-induced apoptosis. CONCLUSION Piezo1 was expressed in type II pneumocytes. Mechanical stretch of alveoli during ARDS induced activation of the Piezo1 channel,which resulted in calcium influx. The increased intracellular Ca2+ induced the apoptosis of type II pneumocytes, which may be related to the Bcl-2 pathway.
Collapse
Affiliation(s)
- Guo-Peng Liang
- Department of Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li-Li Cao
- Chengdu Medical College, Chengdu, 610041, Sichuan, China
| | - Yi-Hua Zeng
- Department of Respiratory Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bai-Xu Chen
- Department of Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Yang
- Department of Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhong-Wei Zhang
- Department of Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yan Kang
- Department of Critical Care Medicine, West China School of Medicine and West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Song J, Wang Y, Yuan X, Ji Q, Fan C, Zhao H, Hao W, Ren D. Stretching magnitude-dependent inactivation of AKT by ROS led to enhanced p53 mitochondrial translocation and myoblast apoptosis. Mol Biol Cell 2019; 30:1182-1197. [PMID: 30865562 PMCID: PMC6724521 DOI: 10.1091/mbc.e18-12-0770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previously, we had shown that high magnitude stretch (HMS), rather than low magnitude stretch (LMS), induced significant apoptosis of skeletal muscle C2C12 myoblasts. However, the molecular mechanism remains obscure. In this study, we found that p53 protein accumulated in the nucleus of LMS-loaded cells, whereas it translocated into mitochondria of HMS-loaded cells. Knocking down endogenous p53 by shRNA abrogated HMS-induced apoptosis. Furthermore, we demonstrated that overaccumulation of reactive oxygen species (ROS) during HMS-inactivated AKT that was activated in LMS-treated cells, which accounted for the distinct p53 subcellular localizations under HMS and LMS. Blocking ROS generation by N-acetylcysteine (NAC) or overexpressing constitutively active AKT vector (CA-AKT) inhibited HMS-incurred p53 mitochondrial translocation and promoted its nuclear targeting. Moreover, both NAC and CA-AKT significantly attenuated HMS-induced C2C12 apoptosis. Finally, we found that Ser389 phosphorylation of p53 was a downstream event of ROS-inactivated AKT pathway, which was critical to p53 mitochondrial trafficking during HMS stimuli. Transfecting p53-shRNA C2C12s with the mutant p53 (S389A) that was unable to target p53 to mitochondria underwent significantly lower apoptosis than transfection with wild-type p53. Altogether, our study uncovered that mitochondrial localization of p53, resulting from p53 Ser389 phosphorylation through ROS-inactivated AKT pathway, prompted C2C12 myoblast apoptosis during HMS stimulation.
Collapse
Affiliation(s)
- Jing Song
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Yaqi Wang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Qiuxia Ji
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Cunhui Fan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hongmei Zhao
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjing Hao
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
KOLOMAZNIK M, NOVA Z, CALKOVSKA A. Pulmonary Surfactant and Bacterial Lipopolysaccharide: The Interaction and its Functional Consequences. Physiol Res 2017; 66:S147-S157. [DOI: 10.33549/physiolres.933672] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The respiratory system is constantly exposed to pathogens which enter the lungs by inhalation or via blood stream. Lipopolysaccharide (LPS), also named endotoxin, can reach the airspaces as the major component of the outer membrane of Gram-negative bacteria, and lead to local inflammation and systemic toxicity. LPS affects alveolar type II (ATII) cells and pulmonary surfactant and although surfactant molecule has the effective protective mechanisms, excessive amount of LPS interacts with surfactant film and leads to its inactivation. From immunological point of view, surfactant specific proteins (SPs) SP-A and SP-D are best characterized, however, there is increasing evidence on the involvement of SP-B and SP-C and certain phospholipids in immune reactions. In animal models, the instillation of LPS to the respiratory system induces acute lung injury (ALI). It is of clinical importance that endotoxin-induced lung injury can be favorably influenced by intratracheal instillation of exogenous surfactant. The beneficial effect of this treatment was confirmed for both natural porcine and synthetic surfactants. It is believed that the surfactant preparations have anti-inflammatory properties through regulating cytokine production by inflammatory cells. The mechanism by which LPS interferes with ATII cells and surfactant layer, and its consequences are discussed below.
Collapse
Affiliation(s)
| | | | - A. CALKOVSKA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|