1
|
Duan HD, Cheng ZF, Zhu JB, Hu R, Li XY. Vernodalin regulated the NF-κβp65 signaling in inflammation of lipopolysaccharide -induced sepsis rats. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
2
|
Sahin B, Ergul M. Captopril exhibits protective effects through anti-inflammatory and anti-apoptotic pathways against hydrogen peroxide-induced oxidative stress in C6 glioma cells. Metab Brain Dis 2022; 37:1221-1230. [PMID: 35286533 DOI: 10.1007/s11011-022-00948-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
Recent studies have shown that angiotensin-converting enzyme (ACE) inhibitors have reduced oxidative damage in the central nervous system (CNS). Accumulating evidence have also demonstrated that captopril, an ACE inhibitor, has protective effects on the CNS. However, its effects on hydrogen peroxide (H2O2)-induced oxidative damage in glial cells and interaction with the inflammatory system are still uncertain. Therefore, this study was aimed to investigate the protective effect of captopril on glial cell damage after H2O2-induced oxidative stress involved in the inflammatory and apoptotic pathways. The control group was without any treatment, and the H2O2 group was treated with 0.5 mM H2O2 for 24 h. The captopril group was treated with various concentrations of captopril for 24 h. The captopril + H2O2 group was pre-treated with captopril for 1 h and then exposed to 0.5 mM H2O2 for 24 h. In the captopril + H2O2 group, captopril at all concentrations significantly increased the cell viability in C6 cells. It also significantly increased the TAS and decreased the TOS levels which are an indicator of oxidative stress. Moreover, captopril significantly reduced the inflammation markers including NF-kB, IL-1 β, COX-1, and COX-2 levels. Flow cytometry results also exhibited that captopril pretreatment significantly decreased the apoptosis rate. Besides, captopril significantly reduced apoptotic Bax and raised anti-apoptotic Bcl-2 protein levels. In conclusion, captopril has protective effects on C6 cells after H2O2-induced oxidative damage by inhibiting oxidative stress, inflammation, and apoptosis. However, further studies need to be conducted to evaluate the potential of captopril as a neuroprotective agent.
Collapse
Affiliation(s)
- Bilal Sahin
- Departments of Physiology, School of Medicine, Sivas Cumhuriyet University, TR-58140, Sivas, Turkey.
| | - Mustafa Ergul
- Departments of Biochemistry, School of Pharmacy, Sivas Cumhuriyet University, Sivas, TR-58140, Turkey
| |
Collapse
|
3
|
Al-Hashem F, Al Humayed S, Haidara MA, Abdel Latif NS, Al-Ani B. Captopril suppresses hepatic mammalian target of rapamycin cell signaling and biomarkers of inflammation and oxidative stress in thioacetamide-induced hepatotoxicity in rats. Arch Physiol Biochem 2021; 127:414-421. [PMID: 31364422 DOI: 10.1080/13813455.2019.1647249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The potential inhibitory effects of captopril, the angiotensin-converting enzyme inhibitor, on thioacetamide (TAA)-induced hepatic mammalian target of rapamycin (mTOR), liver injury enzymes, blood pressure, and biomarkers of inflammation and oxidative stress have not been investigated before. MATERIALS AND METHODS Rats were either injected with TAA (200 mg/kg; twice a week for 8 weeks) before being sacrificed after 10 weeks (model group) or were pretreated with captopril (150 mg/kg) daily for two weeks prior to TAA injections and continued receiving both agents until the end of the experiment (protective group). RESULTS Captopril significantly (p < .05) inhibited TAA-induced hypertension, liver tissue levels of mTOR, TIMP-1, TNF-α, IL-6, MDA; and blood levels of lipids, ALT, and AST. We further demonstrated a significant (p < .01) positive correlation between mTOR scoring and the levels of inflammatory, oxidative and liver injury biomarkers. CONCLUSIONS Captopril protects against TAA-induced mTOR, liver injury enzymes, dyslipidemia, hypertension, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Suliman Al Humayed
- Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Mohamed A Haidara
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha S Abdel Latif
- Medical Pharmacology Department, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Thymoquinone Ameliorates Lung Inflammation and Pathological Changes Observed in Lipopolysaccharide-Induced Lung Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6681729. [PMID: 33859710 PMCID: PMC8024078 DOI: 10.1155/2021/6681729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Anti-inflammatory, antioxidant, and immunomodulatory effects of thymoquinone (TQ) have been shown. The effects of TQ on lipopolysaccharide- (LPS-) induced inflammation and pathological changes in rats' lung were investigated in this study. Four groups of rats included (1) control (saline treated); (2) LPS (treated with 1 mg/kg/day i.p. for two weeks); and (3 and 4) 5 or 10 mg/kg TQ i.p. 30 min prior to LPS administration. Total and differential WBC counts in the blood and bronchoalveolar fluid (BALF), TGF-β1, INF-γ, PGE2, and IL-4 levels in the BALF and pathological changes of the lung were evaluated. Total WBC count and eosinophil, neutrophil, and monocyte percentage were increased, but the lymphocyte percentage was reduced in the blood and BALF. The BALF levels of PGE2, TGF-β1, and INF-γ were also increased, but IL-4 level was reduced due to LPS administration. LPS also induced pathological insults in the lung of rats (P < 0.05 to P < 0.001 for all changes in LPS-exposed animals). Treatment with TQ showed a significant improvement in all changes induced by LPS (P < 0.05 to P < 0.05). TQ showed a protective effect on LPS-induced lung inflammation and pathological changes in rats which suggested a therapeutic potential for TQ on lung injury.
Collapse
|
5
|
Zhu M, Wang J, Chen C, Song Y, Pan J. Transcriptomic analysis of key genes and pathways in human bronchial epithelial cells BEAS-2B exposed to urban particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9598-9609. [PMID: 33150508 DOI: 10.1007/s11356-020-11347-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Urban particulate matter (PM), a great danger to public health, is associated with increasing risk of pulmonary diseases. However, the involved key genes and signaling pathways mediating the cellular responses to urban PM are largely unknown. In this study, human bronchial epithelial cells BEAS-2B was exposed to Standard reference material (SRM) 1649b, followed by RNA-sequencing (RNA-seq) and a combination of different bioinformatics analysis. A total of 201 genes (111 upregulated and 90 downregulated) were identified as the differentially expressed genes (DEGs). Moreover, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) unveiled several significant genes and pathways involved in PM-induced lung toxicity. Protein-protein interaction (PPI) network was performed with the Search Tool for the Retrieval of Interacting Genes (STRING), and the hub gene modules were recognized by Molecular Complex Detection (MCODE), a plug-in of Cytoscape. Moreover, Connectivity Map (CMap) analysis found six candidate small molecular compounds to reverse PM-altered gene expression, including aminohippuric acid, captopril, cinoxacin, fasudil, pargyline, and altizide. Finally, the expressions of part vital genes related to inflammation (IL-1β, CXCL2, CXCL5, CXCL8), ferroptosis (HMOX1, GCLM), and autophagy (BECN1, MAPK1LC3B) were in accordance with the RNA-seq data, with a concentration-dependent manner. This study may be helpful in revealing the complex molecular mechanisms underlying PM-induced lung toxicity and provide some new therapeutic targets for PM-related pulmonary diseases.
Collapse
Affiliation(s)
- Mengchan Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Cuicui Chen
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jue Pan
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochem Biophys Rep 2021; 25:100908. [PMID: 33506115 PMCID: PMC7815660 DOI: 10.1016/j.bbrep.2021.100908] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
Objective Inflammation has been considered as an important factor in cardiovascular diseases (CVD). Curcumin has been well known for its anti-inflammatory effects. In current research, protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide (LPS) was investigated in rats. Material and methods The animals were divided into five groups and received the treatments during two weeks [1]: Control in which vehicle was administered instead of curcumin and saline was injected instead of LPS [2], LPS group in which vehicle of curcumin plus LPS (1 mg/kg) was administered [3-5], curcumin groups in them three doses of curcumin (5, 10 and 15 mg/kg) before LPS were administered. Results Administration of LPS was followed by an inflammation status presented by an increased level of white blood cells (WBC) (p < 0.001). An oxidative stress status was also occurred after LPS injection which was presented by an increased level of malondialdehyde (MDA) while, a decrease in thiols, superoxide dismutase (SOD) and catalase(CAT) in all heart, aorta and serum (p < 0.001). The results also showed that curcumin decreased WBC (doses: 10 and 15 mg/kg) (p < 0.001) accompanying with a decrease in MDA (P < 0.01 and P < 0.001). Curcumin also improved the thiols and the activities of SOD and catalase (P < 0.05, P < 0.01 and P < 0.001). Conclusion Based on our findings, curcumin can ameliorates oxidative stress and inflammation induced by LPS in rats to protect the cardiovascular system. The aim of the present study was to investigate the cardiovascular protective effects of curcumin in lipopolysaccharide (LPS) challenged rats Lipopolysaccharide (LPS) induced inflammation model in rats LPS injection was followed by inflammation and induced oxidative stress status in the serum, aorta and heart. Administration of curcumin attenuated oxidative stress and inflammation in the serum, aorta and heart tissues induced by LPS.
Collapse
|
7
|
Lee SY, Cho SS, Bae CS, Bae MS, Park DH. Socheongryongtang suppresses COPD-related changes in the pulmonary system through both cytokines and chemokines in a LPS COPD model. PHARMACEUTICAL BIOLOGY 2020; 58:538-544. [PMID: 32510269 PMCID: PMC8641688 DOI: 10.1080/13880209.2020.1770808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Context: Socheongryongtang is a traditional Korean medical prescription used to treat pulmonary diseases.Objective: This study investigated the therapeutic mechanism of socheongryongtang for pulmonary diseases.Materials and methods: Seventy BALB/c mice were used: control, 0.8 mg/kg/study LPS intranasal instillation, 1 mg/kg/day Spiriva oral administration for five days, two socheongryongtang groups (150 or 1500 mg/kg/day orally treatment for five days). To illuminate the anti-COPD mechanism, several factors were evaluated such as WBC and differential counts in BALF and IgE in serum, morphological changes, and changes of COPD-related cytokines (TNF-α, IFN-γ, TGF-β) and chemokines (CXCL1, CCL-2, CCR2) in the lung. In order to confirm the statistical significance, all results were compared under p < 0.01 and p < 0.05.Results: LPS induced a high level of WBC, neutrophils and eosinophils in our in vivo study. Additionally, COPD related cytokines and chemokines such as TNF-α, IFN-γ, TGF-β, CXCL1, CCL-2 and CCR2 were induced by LPS. Compared to the LPS treatment group, socheongryongtang significantly controlled the level of WBC, neutrophils and eosinophils as well as the level of IgE. It effectively down-regulated the morphological changes, such as fibrosis near bronchoalveolar spaces, small airway destruction (emphysema), etc. It also inhibited the levels of COPD-related cytokines (TNF-α, IFN-γ, TGF-β) and chemokines (CXCL1, CCL-2, CCR2) compared to the LPS treatment group. In particular, socheongryongtang significantly down-regulated the levels of TNF-α, IFN-γ, and CCR2.Conclusions: Socheongryongtang controlled COPD, but as it has been used as a prescription for respiratory disease, we should additionally evaluate the therapeutic effects against various pulmonary diseases.
Collapse
Affiliation(s)
- Soon-Young Lee
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
| | - Seung-Sik Cho
- College of Pharmacy, Mokpo National University, Muan, Republic of Korea
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Min-Suk Bae
- Department of Environmental Engineering, College of Engineering, Mokpo National University, Muan, Republic of Korea
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju, Republic of Korea
- CONTACT Dae-Hun Park College of Korean Medicine, Dongshin University, 185 Kyunjae-ro, Naju58245, Republic of Korea
| |
Collapse
|
8
|
Mokhtari-Zaer A, Hosseini M, Roshan NM, Boskabady MH. Treadmill exercise ameliorates memory deficits and hippocampal inflammation in ovalbumin-sensitized juvenile rats. Brain Res Bull 2020; 165:40-47. [PMID: 32998022 DOI: 10.1016/j.brainresbull.2020.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
The behavioral changes, including spatial learning and memory impairment as well as depressive- and anxiety-like behaviors in an animal model of asthma were demonstrated previously. On the other hand, there is increasing evidence that the anti-inflammatory actions of exercise are related to their neuroprotective properties against different insults in the brain. This study was aimed to explore the effects of moderate treadmill exercise on cognitive deficits and possible anti-inflammatory mechanisms in ovalbumin (OVA)-sensitized rats. The exercise groups were trained to run on the treadmill 30 min/day with an intensity of 12 m/min, 5 days/week for 4 weeks. Animals in the OVA groups were sensitized by two intraperitoneal (i.p.) injections of OVA (10 μg/injection) and challenged with OVA by inhalation during the treadmill running exercise period. Passive avoidance (PA) memory, levels of interleukin (IL)-10 and tumor necrosis factor (TNF)-α in the hippocampus, total and differential white blood cell (WBC) count in the blood as well as pathological changes of the lung were then evaluated. OVA-sensitization was resulted in cognitive deficits in the PA task, along with increased total and differential WBC in blood and TNF-α in the hippocampus. However, exercise ameliorated these changes and increased the IL-10 level in the hippocampus, suggesting that moderate treadmill exercise can improve memory impairment in OVA-sensitized rats due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Amin Mokhtari-Zaer
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nama Mohammadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Echinacea polysaccharide alleviates LPS-induced lung injury via inhibiting inflammation, apoptosis and activation of the TLR4/NF-κB signal pathway. Int Immunopharmacol 2020; 88:106974. [PMID: 33182056 DOI: 10.1016/j.intimp.2020.106974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 11/23/2022]
Abstract
Lung injury is a common critical life-threatening syndrome. Inflammation is a key factor in the pathogenesis of lung injury. It is reported that Echinacea Polysaccharides (EP) has anti-inflammatory activity. However, the effect of EP on lung injury remains unclear. In our study, murine model of lung injury was induced with 2.5 mg/kg LPS before administration of 5 mg/kg or 10 mg/kg EP. EP ameliorated LPS-induced lung pathological damage, along with reduction in lung wet/dry weight ratio and myeloperoxidase activity. EP decreased the number of leukocytes, eosinophils, neutrophils, lymphocytes and macrophages in bronchoalveolar lavage fluid, and the release of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in LPS-treated lung. EP suppressed LPS-induced apoptosis along with down-regulation of Bcl2-associated X (Bax) and cleaved caspase-3 (CC3), and elevated B-cell lymphoma-2 (Bcl-2). Besides, RAW 264.7 cells were treated with EP 100 μg/ml for 1 h and then incubated with 1 μg/ml LPS for 24 h. TNF-α, IL-6 and IL-1β levels were lowered by treatment of EP in LPS-treated RAW 264.7 cells. Moreover, EP down-regulated the expression of toll-like receptor 4 (TLR4), myeloid differentiating factor 88 (MyD88), p-IκBα, nuclear factor kappa-B (NF-κB), p-NF-κB, and up-regulated the inhibitor of NF-κB (IκBα) in vivo and in vitro following LPS induction, which is consistent with the effect of TAK-242. In conclusion, EP may alleviate LPS-induced lung injury via inhibiting inflammation, apoptosis and activation of TLR4/NF-κB signal pathway.
Collapse
|
10
|
Wang X. Inhibition of HtrA2 alleviates inflammatory response and cell apoptosis in lipopolysaccharide‑induced acute pneumonia in rats. Mol Med Rep 2020; 22:3127-3134. [PMID: 32945404 PMCID: PMC7453584 DOI: 10.3892/mmr.2020.11410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Pneumonia is one of the commonest causes of death worldwide. High-temperature requirement A2 (HtrA2) is a proapoptotic mitochondrial serine protease involved in caspase-dependent or caspase-independent cell apoptosis. UCF-101 (5-[5-(2-nitrophenyl) furfuryl iodine]-1,3-diphenyl-2-thiobarbituric acid), an inhibitor of HtrA2, has a protective effect on organs in various diseases by inhibiting cell apoptosis. The aim of the present study was to explore whether UCF-101 has a protective effect on lungs in pneumonia. A lipopolysaccharide (LPS)-induced pneumonia model was established in rats. UCF-101 (2 µmol/kg) was used for treatment. Lung injury was detected by hematoxylin and eosin staining. Pro-inflammatory cytokines and oxidative stress-related factors were detected using corresponding test kits. TUNEL staining was used to measure the amount of cell apoptosis. Apoptosis-associated proteins were detected by western blot assay. The present study indicated pulmonary injury induced by LPS. Treatment with UCF-101 clearly alleviated this pulmonary damage and restored the levels of pro-inflammatory cytokines and oxidative stress-related factors. In addition, UCF-101 significantly reduced LPS-induced cell apoptosis, the release of HtrA2 and cytochrome from mitochondria to the cytoplasm and inhibited the expression of pro-apoptotic proteins. UCF-101 also restored the ATP level. The present results demonstrated that UCF-101 acts as a positive regulator of acute pneumonia by inhibiting inflammatory response, oxidative stress and mitochondrial apoptosis. The present study suggests UCF-101 as a potential candidate for pneumonia therapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, P.R. China
| |
Collapse
|
11
|
Epithelial Dysfunction in Lung Diseases: Effects of Amino Acids and Potential Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:57-70. [PMID: 32761570 DOI: 10.1007/978-3-030-45328-2_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lung diseases affect millions of individuals all over the world. Various environmental factors, such as toxins, chemical pollutants, detergents, viruses, bacteria, microbial dysbiosis, and allergens, contribute to the development of respiratory disorders. Exposure to these factors activates stress responses in host cells and disrupt lung homeostasis, therefore leading to dysfunctional epithelial barriers. Despite significant advances in therapeutic treatments for lung diseases in the last two decades, novel interventional targets are imperative, considering the side effects and limited efficacy in patients treated with currently available drugs. Nutrients, such as amino acids (e.g., arginine, glutamine, glycine, proline, taurine, and tryptophan), peptides, and bioactive molecules, have attracted more and more attention due to their abilities to reduce oxidative stress, inhibit apoptosis, and regulate immune responses, thereby improving epithelial barriers. In this review, we summarize recent advances in amino acid metabolism in the lungs, as well as multifaceted functions of amino acids in attenuating inflammatory lung diseases based on data from studies with both human patients and animal models. The underlying mechanisms for the effects of physiological amino acids are likely complex and involve cell signaling, gene expression, and anti-oxidative reactions. The beneficial effects of amino acids are expected to improve the respiratory health and well-being of humans and other animals. Because viruses (e.g., coronavirus) and environmental pollutants (e.g., PM2.5 particles) induce severe damage to the lungs, it is important to determine whether dietary supplementation or intravenous administration of individual functional amino acids (e.g., arginine-HCl, citrulline, N-acetylcysteine, glutamine, glycine, proline and tryptophan) or their combinations to affected subjects may alleviate injury and dysfunction in this vital organ.
Collapse
|
12
|
Mokhtari-Zaer A, Norouzi F, Askari VR, Khazdair MR, Roshan NM, Boskabady M, Hosseini M, Boskabady MH. The protective effect of Nigella sativa extract on lung inflammation and oxidative stress induced by lipopolysaccharide in rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112653. [PMID: 32035219 DOI: 10.1016/j.jep.2020.112653] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 05/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxidative stress during inflammation can increase inflammation and damage tissue. Nigella sativa L. (NS) showed many pharmacological properties including antioxidant and anti-inflammatory activities. AIM OF THE STUDY In this study, the preventive effect of NS on lung inflammation and oxidative stress induced by lipopolysaccharide (LPS) in the rats was investigated. MATERIALS AND METHODS Male rats were assigned to: Control, LPS (1 mg/kg, i.p.), LPS + NS (100, 200, 400 mg/kg, i.p.), (10 per group). Saline (1 ml/kg) was intra-peritoneal (i.p.) injected instead of LPS in the rats of the control group. LPS dissolved in saline and injected i.p. daily for 14 days. Treatment with NS extracts started two days before LPS administration and treatment continued during LPS administration. White blood cells (WBC), total and differential as well as oxidative stress index in bronchoalveolar fluid (BALF) and serum, TGF-β1, IFN-γ, PGE2, and IL-4 levels in the BALF and lung histopathology were examined. RESULTS LPS administration increased total WBC, eosinophils, neutrophils, basophils, and monocytes counts as well as oxidative stress markers in the BALF and serum as well as TGF-β1, IFN-γ, PGE2, IL-4 levels in the BALF and pathological changes of the lung tissue. All of these effects were reduced by NS extract treatment dose-dependently. CONCLUSION These results suggested the protective effects of NS extract on lung inflammation and oxidative stress as well as its effect on lung pathology induced by LPS dose-dependently.
Collapse
Affiliation(s)
- Amin Mokhtari-Zaer
- Pharmaceutical Sciences Research Center, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Norouzi
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nama Mohammadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Saadat S, Beheshti F, Askari VR, Hosseini M, Mohamadian Roshan N, Boskabady MH. Aminoguanidine affects systemic and lung inflammation induced by lipopolysaccharide in rats. Respir Res 2019; 20:96. [PMID: 31113409 PMCID: PMC6530199 DOI: 10.1186/s12931-019-1054-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nitric oxide is a mediator of potential importance in numerous physiological and inflammatory processes in the lung. Aminoguanidine (AG) has been shown to have anti-inflammation and radical scavenging properties. This study aimed to investigate the effects of AG, an iNOS inhibitor, on lipopolysaccharide (LPS)-induced systemic and lung inflammation in rats. METHODS Male Wistar rats were divided into control, LPS (1 mg/kg/day i.p.), and LPS groups treated with AG 50, 100 or 150 mg/kg/day i.p. for five weeks. Total nitrite concentration, total and differential white blood cells (WBC) count, oxidative stress markers, and the levels of IL-4, IFN-γ, TGF-β1, and PGE2 were assessed in the serum or bronchoalveolar lavage fluid (BALF). RESULTS Administration of LPS decreased IL-4 level (p < 0.01) in BALF, total thiol content, superoxide dismutase (SOD) and catalase (CAT) activities (p < 0.001) in BALF and serum, and increased total nitrite, malondialdehyde (MDA), IFN-γ, TGF-β1 and PGE2 (p < 0.001) concentrations in BALF. Pre-treatment with AG increased BALF level of IL-4 and total thiol as well as SOD and CAT activities (p < 0.05 to p < 0.001), but decreased BALF levels of total nitrite, MDA, IFN-γ, TGF-β1, and PGE2 (p < 0.01 to p < 0.001). AG treatment decreased total WBC count, lymphocytes and macrophages in BALF (p < 0.01 to p < 0.001) and improved lung pathological changes including interstitial inflammation and lymphoid infiltration (p < 0.05 to p < 0.001). CONCLUSIONS AG treatment reduced oxidant markers, inflammatory cytokines and lung pathological changes but increased antioxidants and anti-inflammatory cytokines. Therefore, AG may play a significant protective role against inflammation and oxidative stress that cause lung injury.
Collapse
Affiliation(s)
- Saeideh Saadat
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Vahid Reza Askari
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Nema Mohamadian Roshan
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|