1
|
Cui Q, Liu D, Chen H, Qiu T, Zhao S, Duan C, Cui Y, Zhu X, Chao H, Wang Y, Wang J, Fang L. Synergistic interplay between Azospirillum brasilense and exogenous signaling molecule H 2S promotes Cd stress resistance and growth in pak choi (Brassica chinensis L.). JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130425. [PMID: 36435046 DOI: 10.1016/j.jhazmat.2022.130425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Inoculation with growth-promoting rhizobacteria inoculation and the addition of exogenous signaling molecules are two distinct strategies for improving heavy metal resistance and promoting growth in crops through several mechanisms. However, whether rhizobacteria and phyllosphere signaling molecules can act synergistically alleviate heavy metal stress and promote growth and the mechanisms underlying these effects remain unclear. Here, a novel strategy involving the co-application of growth-promoting rhizobacteria and an exogenous signaling molecule was developed to reduce cadmium (Cd) phytotoxicity and promote pak choi growth in Cd-contaminated soil. We found that the co-application of Azospirillum brasilense and hydrogen sulfide (H2S) resulted in significant improvements in shoot biomass and antioxidant enzyme content and a decline in the levels of Cd translocation factors. In addition, this co-application significantly improved pak choi Cd resistance. Furthermore, we observed a significant negative correlation between abscisic acid concentration and Cd content of pak choi and a positive correlation between H2S concentration and biomass. These findings revealed that the co-application of rhizobacteria and exogenous signaling molecules synergistically promoted the growth of vegetable crops subjected to heavy metal stress. Our results may serve as a guide for improving the food safety of crops grown in soil contaminated with heavy metals.
Collapse
Affiliation(s)
- Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hansong Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Xingzhi, Zhejiang Normal University, Jinhua 321000, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxing Cui
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Herong Chao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yuhan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jie Wang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, CAS and MOE, Yangling 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, CAS and MWR, Yangling 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi'an 710061, China.
| |
Collapse
|