1
|
Lipid Droplet-a New Target in Ischemic Heart Disease. J Cardiovasc Transl Res 2022; 15:730-739. [PMID: 34984637 DOI: 10.1007/s12265-021-10204-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
Lipid droplet (LD) is a kind of subcellular organelle, which originates from the endoplasmic reticulum (ER). LDs can move flexibly between other organelles and store energy in the cells. In recent years, LDs and lipid droplet-associated proteins have attracted added attention at home and abroad, especially in cardiovascular diseases. Cardiovascular diseases, especially ischemic heart disease (IHD), have always been the focus of attention because of their high morbidity and mortality. Atherosclerosis and myocardial remodeling are two important pathologic processes of IHD, and LDs and other organelles are involved in the development of the disease. The interaction between LDs and ER is involved in the formation of foam cells in atherosclerosis. And LDs, mitochondria, and lysosomes also affect the remodeling of cardiomyocytes by affecting ROS production and regulating PI3K/AKT pathways. In this article, we will review the role of LDs in IHD.
Collapse
|
2
|
Kato Y, Arakawa S, Terasawa K, Inokuchi JI, Iwata T, Shimizu S, Watabe T, Hara-Yokoyama M. The ceramide analogue N-(1-hydroxy-3-morpholino-1-phenylpropan-2-yl)decanamide induces large lipid droplet accumulation and highlights the effect of LAMP-2 deficiency on lipid droplet degradation. Bioorg Med Chem Lett 2020; 30:126891. [PMID: 31874824 DOI: 10.1016/j.bmcl.2019.126891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Excess accumulation of intracellular lipids leads to various diseases. Lipid droplets (LDs) are ubiquitous cellular organelles for lipid storage. LDs are hydrolyzed via cytosolic lipases (lipolysis) and also degraded in lysosomes through autophagy; namely, lipophagy. A recent study has shown the size-dependent selection of LDs by the two major catabolic pathways (lipolysis and lipophagy), and thus experimental systems that can manipulate the size of LDs are now needed. The ceramide analogue N-(1-hydroxy-3-morpholino-1-phenylpropan-2-yl)decanamide (PDMP) affects the structures and functions of lysosomes/late endosomes and the endoplasmic reticulum (ER), and alters cholesterol homeostasis. We previously reported that PDMP induces autophagy via the inhibition of mTORC1. In the present study, we found that PDMP induced the accumulation of LDs, especially that of large LDs, in mouse fibroblast (L cells). Surprisingly, the LD accumulation was relieved by PDMP in L cells deficient in lysosome-associated membrane protein-2 (LAMP-2), which is reportedly important for lipophagy. An electron microscopy analysis demonstrated that the LAMP-2 deficiency caused enlarged autophagosomes/autolysosomes in L cells, which may promote the sequestration and degradation of the PDMP-dependent large LDs. Accordingly, PDMP will be useful to explore the mechanism of LD degradation, by inducing large LDs.
Collapse
Affiliation(s)
- Yuji Kato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
3
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
4
|
Perrotta I, Perri E. Ultrastructural, Elemental and Mineralogical Analysis of Vascular Calcification in Atherosclerosis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:1030-1039. [PMID: 28874210 DOI: 10.1017/s1431927617012533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the past few decades, remarkable progress has been achieved in terms of understanding the molecular and cellular mechanisms of atherosclerotic vascular calcification and the important role of matrix vesicles in initiating and propagating pathologic tissue mineralization has been widely recognized. Despite these recent advances, however, no definitive data are currently available regarding the texture and composition of the minerals that grow in the vessel wall during the course of the disease. Using different electron microscopy imaging and analysis, we demonstrate that vascular cells can produce and secrete more than one type of matrix vesicles which act as sites for initial mineral deposition independently of their structural features. Our results reveal that apatite formation in the atherosclerotic lesions of the human aorta occur through the deposition of amorphous calcium phosphate that matures over time, transforms into crystalline hydroxyapatite, and radiates towards the lumen of the vesicles, finally forming the calcified spherules. Elemental and mineralogical analyses also demonstrate that the presence of mature and stable amorphous calcium phosphate deposits in the affected tissues is linked to the incorporation of magnesium, which probably delay the conversion to the crystalline phase. Though more rarely, the presence of calcium oxalate crystals has been also documented.
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, Arcavacata di Rende (Cosenza) 87036, Italy
| | - Edoardo Perri
- Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, Arcavacata di Rende (Cosenza) 87036, Italy
| |
Collapse
|
5
|
Perrotta I. The origin of the autophagosomal membrane in human atherosclerotic plaque: a preliminary ultrastructural study. Ultrastruct Pathol 2017; 41:327-334. [PMID: 28796583 DOI: 10.1080/01913123.2017.1349853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Autophagy is an evolutionarily conserved process that occurs ubiquitously and functions as a primary route for the degradation of damaged organelles and proteins in response to starvation, oxidative stress, and other harmful conditions. The initial event upon autophagy induction is the formation of a membranous cistern called the phagophore or isolation membrane, a cup-shaped structure that elongates, engulfs cytoplasmic "cargo", and fuses at its rims to give rise to the autophagosome within which cytoplasmic material is enclosed. Although thoroughly studied in diverse cell culture systems, few attempts have been made to analyze the membrane dynamics during phagophore biogenesis in tissues. With respect to the cardiovascular system, no structural information is currently available regarding the sources that may contribute to the nucleation and growth of the phagophore membrane. The results presented here demonstrate that in the cells of human atherosclerotic plaque the phagophores are in contact with the endoplasmic reticulum (ER) membranes. Initially, the phagophore appears as a membrane sac that enwraps injured organelles and dysfunctional proteins and then matures into a double-membrane, closed structure often containing portions of the ER. These structural data indicate that the membrane source that elongates the phagophore might probably come from the ER. The topographical relationship between the ER tubules and the phagophore might also favor an efficient mechanism to transfer lipids from their site of synthesis to the nascent membrane, thus promoting its elongation and, ultimately, the formation of the autophagosome.
Collapse
Affiliation(s)
- Ida Perrotta
- a Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, Transmission Electron Microscopy Laboratory , University of Calabria , Arcavacata di Rende , Cosenza , Italy
| |
Collapse
|