1
|
Abou-Saleh RH, Delaney A, Ingram N, Batchelor DVB, Johnson BRG, Charalambous A, Bushby RJ, Peyman SA, Coletta PL, Markham AF, Evans SD. Freeze-Dried Therapeutic Microbubbles: Stability and Gas Exchange. ACS APPLIED BIO MATERIALS 2020; 3:7840-7848. [DOI: 10.1021/acsabm.0c00982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Radwa H. Abou-Saleh
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
- Biophysics Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35511, Egypt
| | - Aileen Delaney
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Nicola Ingram
- Leeds Institute of Medical Research, Wellcome Trust Brenner
Building, St. James’s University Hospital, Leeds LS9 7TF, U.K
| | - Damien V. B. Batchelor
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Benjamin R. G. Johnson
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - Antonia Charalambous
- Leeds Institute of Medical Research, Wellcome Trust Brenner
Building, St. James’s University Hospital, Leeds LS9 7TF, U.K
| | - Richard J. Bushby
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
- Leeds Institute of Medical Research, Wellcome Trust Brenner
Building, St. James’s University Hospital, Leeds LS9 7TF, U.K
| | - P. Louise Coletta
- Leeds Institute of Medical Research, Wellcome Trust Brenner
Building, St. James’s University Hospital, Leeds LS9 7TF, U.K
| | - Alexander F. Markham
- Leeds Institute of Medical Research, Wellcome Trust Brenner
Building, St. James’s University Hospital, Leeds LS9 7TF, U.K
| | - Stephen D. Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
2
|
Kwolek U, Nakai K, Pluta A, Zatorska M, Wnuk D, Lasota S, Bednar J, Michalik M, Yusa SI, Kepczynski M. Polyion complex vesicles (PICsomes) from strong copolyelectrolytes. Stability and in vitro studies. Colloids Surf B Biointerfaces 2017; 158:658-666. [DOI: 10.1016/j.colsurfb.2017.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 01/09/2023]
|
3
|
Li W, Tan XN, Luo T, Huang X, Wang Q, Yang YJ, Wang MJ, Liu LF. Formation of pH-responsive drug-delivery systems by electrospinning of vesicle-templated nanocapsule solutions. RSC Adv 2016. [DOI: 10.1039/c5ra26866d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A novel nanofibrous membrane, which contains chitosan/sodium alginate nanocapsules constructed by vesicle systems, has been fabricated via an electrospinning process as a drug-delivery system.
Collapse
Affiliation(s)
- W. Li
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - X. N. Tan
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - T. Luo
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - X. Huang
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - Q. Wang
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - Y. J. Yang
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - M. J. Wang
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| | - L. F. Liu
- Department of Chemistry
- Capital Normal University
- Beijing
- China
| |
Collapse
|
4
|
Li W, Yang Y, Liu L, Tan X, Luo T, Shen J. Dual stimuli-responsive self-assembly transition in zwitterionic/anionic surfactant systems. SOFT MATTER 2015; 11:4283-9. [PMID: 25903393 DOI: 10.1039/c5sm00627a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Temperature and pH responsiveness is important for biological applications in protein reconstitution, gene delivery and controlled drug release. The temperature and pH dual responsive self-assembly transition, vesicle-to-micelle transitions (VMTs) and micelle-to-vesicle transitions (MVTs), in dodecyl sulfonatebetaine (DSB)/sodium bis(2-ethylhexyl) sulfosuccinate (AOT) aqueous solution are investigated. Various experimental techniques including cryogenic transmission electronic microscopy, UV-vis spectroscopy, fluorescence spectroscopy, conductivity, and zeta potential were employed to verify the transformation process. Encapsulation of calcein was further applied in this study. The results showed that the self-assembly transition in DSB/AOT aqueous solution is reversible and can be controlled by temperature and pH. It is anticipated that utilizing simple stimuli methods to realize unique self-assembly behaviour in dilute aqueous solution may offer new possibilities in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | | | | | | | | | | |
Collapse
|
5
|
Li W, Yang Y, Luo T, Zhang J, Han B. CO2-induced micelle to vesicle transition in zwitterionic–anionic surfactant systems. Phys Chem Chem Phys 2014; 16:3640-7. [DOI: 10.1039/c3cp54537g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Zhou X, Xue J, Wang G, Lei T. Cu 2+-Induced Vesicle Formation. J DISPER SCI TECHNOL 2013. [DOI: 10.1080/01932691.2011.648458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Ghosh S, Khatua D, Dey J. Interaction between zwitterionic and anionic surfactants: spontaneous formation of zwitanionic vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5184-5192. [PMID: 21462963 DOI: 10.1021/la1040147] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The physicochemical properties, such as critical micelle concentration (cmc), surface tension at cmc (γ(cmc)), and surface activity parameters of the mixtures of a new amino acid-based zwitterionic surfactant, N-(n-dodecyl-2-aminoethanoyl)-glycine (C(12)Gly) and an anionic surfactant, sodium dodecyl sulfate (SDS) at different molar fractions, X(1) (= [C(12)Gly]/([C(12)Gly] + [SDS])) of C(12)Gly were studied. A synergistic interaction was observed between the surfactants in mixtures of different X(1). The self-organization of the mixtures at different molar fractions, concentrations, and pH was investigated. Fluorescence depolarization studies in combination with dynamic light scattering, and transmission electron microscopic and confocal fluorescence microscopic images suggested the formation of bilayer vesicles in dilute solutions of SDS rich mixtures with X(1) ≤ 0.17 in the pH range 7.0 to 9.0. However, the electronic micrographs showed structures with fingerprint-like texture in moderately dilute to concentrated C(12)Gly/SDS mixture at X(1) = 0.50. The vesicles were observed to transform into small micelles upon lowering the solution pH and upon increase of total surfactant concentration in mixtures with X(1) ≤ 0.17. However, decrease of SDS content transformed vesicles into wormlike micelles. The structural transitions were correlated with bulk viscosity of the binary mixtures.
Collapse
Affiliation(s)
- Sampad Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721 302, India
| | | | | |
Collapse
|
8
|
Pembouong G, Morellet N, Kral T, Hof M, Scherman D, Bureau MF, Mignet N. A comprehensive study in triblock copolymer membrane interaction. J Control Release 2011; 151:57-64. [DOI: 10.1016/j.jconrel.2011.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/24/2010] [Accepted: 01/09/2011] [Indexed: 11/17/2022]
|