1
|
Molet-Rodríguez A, Ramezani M, Salvia-Trujillo L, Martín-Belloso O. Impact of the lipid phase composition and state on the in vitro digestibility and chlorophyllin bioaccessibility of W 1/O/W 2 emulsions into whole milk. Food Res Int 2023; 173:113455. [PMID: 37803781 DOI: 10.1016/j.foodres.2023.113455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Water-in-oil-in-water (W1/O/W2) emulsions offer the potential to deliver hydrophilic bioactive compounds into foods, yet their application remains limited due to their instability. Thus, the impact of lipid phase composition and state on the colloidal stability, in vitro lipid digestibility and chlorophyllin (CHL) bioaccessibility of W1/O/W2 emulsions before and after incorporation into whole milk was studied. Medium-chain triglyceride oil (MCT) was used as a liquid lipid phase and MCT with glyceryl stearate (GS) or pure hydrogenated palm oil (HPO) as gelled lipid phases. The lipid phase composition was crucial to forming W1/O/W2 emulsions. MCT or MCT+GS allowed the successful formation of W1/O/W2 emulsions, being more stable upon gastric conditions those formulated with MCT+GS than pure MCT. In contrast, the use of HPO led to phase separation, which was maintained after the gastric conditions. Regarding their lipid digestibility, W1/O/W2 emulsions formulated with MCT or MCT+GS were fully digested, whereas only 40% of the lipid was digested using HPO. In accordance, the CHL bioaccessibility was higher using MCT or MCT+GS than HPO. When co-digested with whole milk, the colloidal stability and lipid digestibility of the W1/O/W2 emulsions with MCT or MCT+GS were not altered, whereas the W1/O/W2 emulsion-HPO showed enhanced colloidal stability and lipid digestibility (57.71 ± 3.06%), due to the surface-active properties of milk protein. The present study provides useful information to develop stable functional foods enriched with hydrophilic bioactive compounds by using W1/O/W2 emulsions.
Collapse
Affiliation(s)
- Anna Molet-Rodríguez
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Mohsen Ramezani
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Laura Salvia-Trujillo
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|
2
|
Qu Z, An C, Yue R, Bi H, Zhao S. Assessment of the infiltration of water-in-oil emulsion into soil after spill incidents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165325. [PMID: 37414189 DOI: 10.1016/j.scitotenv.2023.165325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
The issue of inland oil spills exerts an adverse impact on environmental and ecological health. Many cases are concerned with water-in-oil emulsions, especially in the oil production and transport system. To understand the contamination and take an efficient response work after spill, this study investigated the infiltration behavior of water-in-oil emulsions and the influencing factors by measuring the characteristics of different emulsions. The results showed that an increase of water and fine particle content and decrease in temperature would improve the viscosity of emulsions and reduce the infiltration rate, whereas salinity levels had a negligible impact on infiltration if the pour point of emulsion systems was far higher than the freezing point of water droplets. It is worth mentioning that excessive water content at a high temperature may cause demulsification during the infiltration process. The oil concentration in different soil layers was related to the viscosity of emulsion and infiltration depth, and the adopted Green-Ampt model simulated well under low temperature. This study reveals the new features of emulsion infiltration behavior and distribution patterns under different conditions and is helpful for the response work after spill accidents.
Collapse
Affiliation(s)
- Zhaonian Qu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Rengyu Yue
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Fanwa MN, Malhiac C, Hucher N, Cheumani AMY, Ndikontar MK, Grisel M. Triumfetta cordifolia Gum as a Promising Bio-Ingredient to Stabilize Emulsions with Potentials in Cosmetics. Polymers (Basel) 2023; 15:2828. [PMID: 37447474 DOI: 10.3390/polym15132828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The cosmetics industry is searching for efficient and sustainable substances capable of stabilizing emulsions or colloidal dispersions that are thermodynamically unstable because of their high surface energy. Therefore, surfactants are commonly used to stabilize the water/oil interface. However, the presence of a surfactant is not always sufficient to obtain stable emulsions on the one hand, and conventional surfactants are often subject to such controversies as their petroleum origin and environmental concerns on the other hand. As a consequence, among other challenges, it is obvious that research related to new-natural, biodegradable, biocompatible, available, competitive-surfactants are nowadays more intensive. This study aims to valorize a natural gum from Triumfetta cordifolia (T. cordifolia) as a sustainable emulsifier and stabilizer for oil-in-water (O/W) emulsions, and to evaluate how the nature of the fatty phase could affect this potential. To this end, O/W emulsions were prepared at room temperature using three different oils varying in composition, using a rotor-stator mixer. Resulting mixtures were characterized using optical microscopy, laser granulometry, rheology, pH and stability monitoring over time. The results demonstrated good potential for the gum as an emulsifying agent. T. cordifolia gum appears efficient even at very low concentrations (0.2% w/w) for the preparation and stabilization of the different O/W emulsions. The best results were observed for cocoglyceride oil due to its stronger effect of lowering interfacial tension (IFT) thus acting as a co-emulsifier. Therefore, overall results showed that T. cordifolia gum is undoubtedly a highly promising new bio-sourced and environmentally friendly emulsifier/stabilizer for many applications including cosmetics.
Collapse
Affiliation(s)
- Michèle N Fanwa
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France
- Research Unit for Macromolecular Chemistry, Laboratory of Applied Inorganic Chemistry, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon
| | - Catherine Malhiac
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France
| | - Nicolas Hucher
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France
| | - Arnaud M Y Cheumani
- Research Unit for Macromolecular Chemistry, Laboratory of Applied Inorganic Chemistry, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon
| | - Maurice K Ndikontar
- Research Unit for Macromolecular Chemistry, Laboratory of Applied Inorganic Chemistry, Faculty of Science, University of Yaounde I, Yaounde P.O. Box 812, Cameroon
| | - Michel Grisel
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France
| |
Collapse
|
4
|
Sobti B, Kamal-Eldin A, Rasul S, Alnuaimi MSK, Alnuaimi KJJ, Alhassani AAK, Almheiri MMA, Nazir A. Encapsulation Properties of Mentha piperita Leaf Extracts Prepared Using an Ultrasound-Assisted Double Emulsion Method. Foods 2023; 12:1838. [PMID: 37174375 PMCID: PMC10178374 DOI: 10.3390/foods12091838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Double emulsions (W1/O/W2) have long been used in the food and pharmaceutical industries to encapsulate hydrophobic and hydrophilic drugs and bioactive compounds. This study investigated the effect of different types of emulsifiers (plant- vs. animal-based proteins) on the encapsulation properties of Mentha piperita leaf extract (MLE) prepared using the double emulsion method. Using response surface methodology, the effect of ultrasound-assisted extraction conditions (amplitude 20-50%; time 10-30 min; ethanol concentration 70-90%) on the total phenolic content (TPC) and antioxidant activity (percent inhibition) of the MLE was studied. MLE under optimized conditions (ethanol concentration 76%; amplitude 39%; time 30 min) had a TPC of 62.83 mg GA equivalents/g and an antioxidant activity of 23.49%. The optimized MLE was encapsulated using soy, pea, and whey protein isolates in two emulsifying conditions: 4065× g/min and 4065× g/30 s. The droplet size, optical images, rheology, and encapsulation efficiency (EE%) of the different encapsulated MLEs were compared. The W1/O/W2 produced at 4065× g/min exhibited a smaller droplet size and higher EE% and viscosity than that prepared at 4065× g/30 s. The higher EE% of soy and pea protein isolates indicated their potential as an effective alternative for bioactive compound encapsulation.
Collapse
Affiliation(s)
- Bhawna Sobti
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Sharmmah D, Bidakar K, M J. Bioremoval of methylene blue dye using chitosan stabilized Pickering emulsion liquid membrane: optimization by Box–Behnken response surface design. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2181181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Debosmita Sharmmah
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - Kasthuri Bidakar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - Jerold M
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
6
|
Singh P, Kaur G, Singh A. Physical, morphological and storage stability of clove oil nanoemulsion based delivery system. FOOD SCI TECHNOL INT 2023; 29:156-167. [PMID: 34939458 DOI: 10.1177/10820132211069470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clove oil based Nanoemulsions (NE) were prepared ultrasonically using Tween 80 and soy lecithin as synthetic and natural surfactants, respectively. The developed NEs were characterized for various parameters (particle size, polydispersity index, zeta potential, morphology, viscosity, colour, turbidity and pH) and the comparative effect of both the surfactants at variable levels (oil:tween 80-1:1, 1:2, 1:3 and 1:4 and oil: soy lecithin- 1:1, 1:1.5 and 1:2) was assessed. It was found that the type of surfactant and oil to surfactant ratio significantly affected particle size and stability of NEs. The NE prepared using tween 80 @1:3 had smallest average droplet diameter (40.9 nm). The formulated NEs were stored at 25 °C and 4 °C and analyzed for turbidity, pH and phase separation up to 90 days. Results revealed that the type and concentration of the surfactant significantly influenced the particle size and stability of NEs. NEs prepared using tween 80 were found to be more viscous than those prepared with soy lecithin. The prepared clove oil NEs have important implication to be used as a natural delivery system to increase the shelf life of food products.
Collapse
Affiliation(s)
- Prastuty Singh
- PhD Scholar, 29763Dept. of Food Science and Technology, PAU, Ludhiana, Punjab, M: 9536664313
| | - Gurkirat Kaur
- Assistant Professor, EMN Lab, PAU, Ludhiana, M: 9501134768
| | - Arashdeep Singh
- Assistant Professor, 29763Dept. of Food Science and Technology, PAU, Ludhiana, Punjab, M: 9876235555
| |
Collapse
|
7
|
Long T, Tan W, Tian X, Tang Z, Hu K, Ge L, Mu C, Li X, Xu Y, Zhao L, Li D. Gelatin/alginate-based microspheres with sphere-in-capsule structure for spatiotemporal manipulative drug release in gastrointestinal tract. Int J Biol Macromol 2023; 226:485-495. [PMID: 36521695 DOI: 10.1016/j.ijbiomac.2022.12.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/24/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Microsphere with sphere-in-capsule structure is a multi-drugs delivery system to achieve the purpose of combination therapy. In this paper, we have prepared gelatin/alginate-based microspheres with sphere-in-capsule structure by a relatively fast, simple, and easily large-scale industrialized emulsification method for spatiotemporal manipulative drug release in gastrointestinal tract. Calcium alginate microspheres encapsulated with bovine serum albumin (BSA) were first prepared as inner microspheres, and then inner microspheres and ranitidine hydrochloride (RH) were co-encapsulated by gelatin microspheres to form double-layer microspheres with sphere-in-capsule structure. The size and distribution of microspheres can be easily controlled by emulsifying conditions. The microspheres with sphere-in-capsule structure displayed desirable encapsulation efficiency of BSA (61.52 %) and RH (56.07 %). The in vitro simulated drug release showed the spatiotemporal release feature of microspheres with sphere-in-capsule structure. In the specific simulated fluid, the release behavior and cumulative release of RH (sustainedly released 95 % in simulated gastric fluid) and BSA (rapidly released 73 % in simulated intestinal fluid) were different. The drug release mechanisms were analyzed to determine RH and BSA's release behavior. Overall, the microspheres with sphere-in-capsule structure have the potential application of spatiotemporal manipulative drug delivery in the gastrointestinal tract.
Collapse
Affiliation(s)
- Tao Long
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Weiwei Tan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xiangmin Tian
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zongjian Tang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Keming Hu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610041, Sichuan, China
| | - Yongbin Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, 610041, PR China.
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
8
|
Hussain A, Altamimi MA, Imam SS, Ahmad MS, Alnemer OA. Green Nanoemulsion Water/Ethanol/Transcutol/LabM-Based Treatment of Pharmaceutical Antibiotic Erythromycin-Contaminated Aqueous Bulk Solution. ACS OMEGA 2022; 7:48100-48112. [PMID: 36591121 PMCID: PMC9798490 DOI: 10.1021/acsomega.2c06095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Contaminated wastewater released from hospital, domestic, and industrial sources is a major challenge to aquatic animals and human health. In this study, we addressed removal of erythromycin (ERN) from contaminated water employing water/ethanol/Transcutol/Labrafil M 1944 CS (LabM) green nanoemulsions as a nanocarrier system. ERN is a major antibiotic contaminant harming aquatic and human lives. Green nanoemulsions were prepared and evaluated for size, size distribution (measuring polydispersity index), stability, zeta potential, refractive index, and viscosity. Transmission electron microscopy (TEM) was used to visualize morphological behavior. The treated-water was analyzed for ERN by the spectroscopy, scanning electron microscopy-energy-dispersive X-ray analysis mode (SEM-EDX), and inductively coupled plasma-optical emission spectroscopy (ICP-OES) techniques. We studied factors (composition, size, viscosity, and time of exposure) affecting removal efficiency (%RE). The obtained green nanoemulsions (ENE1-ENE5) were stable and clear (<180 nm). ENE5 had the smallest size (58 nm), a low polydispersity index value (0.19), optimal viscosity (∼121.7 cP), and a high negative zeta potential value (-25.4 mV). A high %RE value (98.8%) was achieved with a reduced size, a high water amount, a low Capryol 90 content, and optimal viscosity as evidenced by the obtained results. Moreover, contact time had insignificant effect on %RE. UV-vis spectroscopy, SEM-EDX, and ICP-OES confirmed the absence of ERN from the treated water. Conclusively, ERN can easily be removed from polluted water employing green nanoemulsions prepared from the optimized excipients, and evaluated characteristics.
Collapse
|
9
|
Habibi A, Dekiwadia C, Kasapis S, Truong T. Fabrication of double emulsion gel using monoacylglycerol and whey protein concentrate: The effects of primary emulsion gel fraction and particle size. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Zhu Q, Wei W, Zhang L, Meng J, Sui W, Wu T, Li J, Wang P, Zhang M. Fabrication and characterization of gel-in-oil-water (G/O/W) double emulsion stabilized by flaxseed gum/whey protein isolate complexes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Jafarizadeh-Malmiri H, Anarjan N, Berenjian A. Developing three-component ginger-cinnamon-cardamom composite essential oil nanoemulsion as natural food preservatives. ENVIRONMENTAL RESEARCH 2022; 204:112133. [PMID: 34599898 DOI: 10.1016/j.envres.2021.112133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Plant-based functional lipid ingredients, such as essential oils, with antioxidant and antibacterial activities, have gained substantial attention in food, cosmetic, and pharmaceutical formulations due to the increasing disquiet about the risks of artificial preservatives. However, similar to other lipid-based bioactives, their application in water-based products is challenging owing to their low water solubility and high chemical instability, especially during exposure to light, heat, moisture, and oxygen. Hence, the incorporation of essential oils into water-dispersible nanoemulsion systems can effectively address these issues. Moreover, combining various essential oils can synergistically enhance their chemical and biological properties. Consequently, the objective of this study was to develop different composite nanoemulsion systems using ginger, cinnamon, and cardamom essential oils, which were considered individually and in binary and ternary combinations. Empirical models to predict the response characteristics based on the proportions of oil phase components were also derived. The numerical multi-goal optimisation analysis suggested that 10 % ginger, 68 % cinnamon, and 22 % cardamom essential oil is the ideal oil phase combination to achieve nanoemulsions with the smallest average particle size and size distribution and the highest zeta potential and antioxidant and antibacterial activity.
Collapse
Affiliation(s)
- Hoda Jafarizadeh-Malmiri
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran; Department of Food Science and Technology, Applied Scientific Training Center of Shirin Asal Food Industries Group, Tabriz, Iran
| | - Navideh Anarjan
- Department of Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Aydin Berenjian
- School of Engineering, University of Waikato, Hamilton, 3240, New Zealand; Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
12
|
Katsouli M, Tzia C. O1/W/O2 nanoemulsions and emulsions based on extra virgin olive oil produced by ultrasound-assisted homogenization process: Characterization of structure, physical and encapsulation efficiency. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2035235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Katsouli
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Greece
| | - Constantina Tzia
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, Zografou, Greece
| |
Collapse
|
13
|
Akram S, Bao Y, Butt MS, Shukat R, Afzal A, Huang JY. Fabrication and characterization of gum arabic- and maltodextrin-based microcapsules containing polyunsaturated oils. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6384-6394. [PMID: 33973250 DOI: 10.1002/jsfa.11309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Polyunsaturated oils have various health-promoting effects, however, they are highly prone to oxidation. Encapsulation using biopolymers is one of the most effective strategies to enhance oil stability. This research examined the potential of gum arabic and maltodextrin for microencapsulation of omega-3 rich oils, aiming to enhance encapsulation efficiency and stability of encapsulated oil. RESULTS We encapsulated fish and flaxseed oils by emulsification-spray drying. Spray-dried microcapsules were prepared by oil-in-water emulsions consisting of 10 wt% oil and 30 wt% biopolymer (gum arabic, maltodextrin, or their mixture). Results showed that both microcapsules were spherical in shape with surface shrinkage, and exhibited amorphous structures. Gum arabic-based microcapsules had higher encapsulation efficiency as well as better storage stability for both types of oil. Flaxseed oil microcapsules generally had higher oxidative stability regardless of the type of wall material. CONCLUSIONS Through a comprehensive characterization of the physical and chemical properties of the emulsions and resulting microcapsules, we proved gum arabic to be a more effective wall material for polyunsaturated oil microencapsulation, especially flaxseed oil. This study provides a promising approach to stabilize oils which are susceptible to deterioration, and facilitates their wider uses as food and nutraceutical products. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sajeela Akram
- National Institute of Food Science & Technology, University of Agriculture Faislabad, Faisalabad, Pakistan
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Yiwen Bao
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Masood S Butt
- National Institute of Food Science & Technology, University of Agriculture Faislabad, Faisalabad, Pakistan
| | - Rizwan Shukat
- National Institute of Food Science & Technology, University of Agriculture Faislabad, Faisalabad, Pakistan
| | - Arslan Afzal
- Faculty of Agricultural Engineering, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
14
|
Maggay IV, Chang Y, Venault A, Dizon GV, Wu CJ. Functionalized porous filtration media for gravity-driven filtration: Reviewing a new emerging approach for oil and water emulsions separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117983] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Physical, morphological, and storage studies of cinnamon based nanoemulsions developed with Tween 80 and soy lecithin: a comparative study. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00817-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Multiple Emulsions for Enhanced Delivery of Vitamins and Iron Micronutrients and Their Application for Food Fortification. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02586-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Formation and Stabilization of W 1/O/W 2 Emulsions with Gelled Lipid Phases. Molecules 2021; 26:molecules26020312. [PMID: 33435343 PMCID: PMC7827339 DOI: 10.3390/molecules26020312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
Water-in-oil-in-water (W1/O/W2) emulsions are emulsion-based systems where the dispersed phase is an emulsion itself, offering great potential for the encapsulation of hydrophilic bioactive compounds. However, their formation and stabilization is still a challenge mainly due to water migration, which could be reduced by lipid phase gelation. This study aimed to assess the impact of lipid phase state being liquid or gelled using glyceryl stearate (GS) at 1% (w/w) as well as the hydrophilic emulsifier (T80: Tween 80 or lecithin) and the oil type (MCT:medium chain triglyceride or corn oil (CO) as long chain triglyceride) on the formation and stabilization of chlorophyllin W1/O/W2 emulsions. Their colloidal stability against temperature and light exposure conditions was evaluated. Gelling both lipid phases (MCT and CO) rendered smaller W1 droplets during the first emulsification step, followed by formation of W1/O/W2 emulsions with smaller W1/O droplet size and more stable against clarification. The stability of W1/O/W2 emulsions was sensitive to a temperature increase, which might be related to the lower gelling degree of the lipid phase at higher temperatures. This study provides valuable insight for the formation and stabilization of W1/O/W2 emulsions with gelled lipid phases as delivery systems of hydrophilic bioactive compounds under common food storage conditions.
Collapse
|
18
|
Maestro A, Gutiérrez JM, Santamaría E, González C. Rheology of water-in-water emulsions: Caseinate-pectin and caseinate-alginate systems. Carbohydr Polym 2020; 249:116799. [DOI: 10.1016/j.carbpol.2020.116799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/27/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
|
19
|
E. Eleraky N, M. Omar M, A. Mahmoud H, A. Abou-Taleb H. Nanostructured Lipid Carriers to Mediate Brain Delivery of Temazepam: Design and In Vivo Study. Pharmaceutics 2020; 12:pharmaceutics12050451. [PMID: 32422903 PMCID: PMC7284889 DOI: 10.3390/pharmaceutics12050451] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
The opposing effect of the blood–brain barrier against the delivery of most drugs warrants the need for an efficient brain targeted drug delivery system for the successful management of neurological disorders. Temazepam-loaded nanostructured lipid carriers (NLCs) have shown possibilities for enhancing bioavailability and brain targeting affinity after oral administration. This study aimed to investigate these properties for insomnia treatment. Temazepam-NLCs were prepared by the solvent injection method and optimized using a 42 full factorial design. The optimum formulation (NLC-1) consisted of; Compritol® 888 ATO (75 mg), oleic acid (25 mg), and Poloxamer® 407 (0.3 g), with an entrapment efficiency of 75.2 ± 0.1%. The average size, zeta potential, and polydispersity index were determined to be 306.6 ± 49.6 nm, −10.2 ± 0.3 mV, and 0.09 ± 0.10, respectively. Moreover, an in vitro release study showed that the optimized temazepam NLC-1 formulation had a sustained release profile. Scintigraphy images showed evident improvement in brain uptake for the oral 99mTc-temazepam NLC-1 formulation versus the 99mTc-temazepam suspension. Pharmacokinetic data revealed a significant increase in the relative bioavailability of 99mTc-temazepam NLC-1 formulation (292.7%), compared to that of oral 99mTc-temazepam suspension. Besides, the NLC formulation exhibited a distinct targeting affinity to rat brain. In conclusion, our results indicate that the developed temazepam NLC formulation can be considered as a potential nanocarrier for brain-mediated drug delivery in the out-patient management of insomnia.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
- Correspondence: or
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt;
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Hemat A. Mahmoud
- Department of Clinical Oncology and Nuclear Medicine, Assiut University, Assiut 71526, Egypt;
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
20
|
Chang S, Finklea F, Williams B, Hammons H, Hodge A, Scott S, Lipke E. Emulsion-based encapsulation of pluripotent stem cells in hydrogel microspheres for cardiac differentiation. Biotechnol Prog 2020; 36:e2986. [PMID: 32108999 DOI: 10.1002/btpr.2986] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, and current treatments are ineffective or unavailable to majority of patients. Engineered cardiac tissue (ECT) is a promising treatment to restore function to the damaged myocardium; however, for these treatments to become a reality, tissue fabrication must be amenable to scalable production and be used in suspension culture. Here, we have developed a low-cost and scalable emulsion-based method for producing ECT microspheres from poly(ethylene glycol) (PEG)-fibrinogen encapsulated mouse embryonic stem cells (mESCs). Cell-laden microspheres were formed via water-in-oil emulsification; encapsulation occurred by suspending the cells in hydrogel precursor solution at cell densities from 5 to 60 million cells/ml, adding to mineral oil and vortexing. Microsphere diameters ranged from 30 to 570 μm; size variability was decreased by the addition of 2% poly(ethylene glycol) diacrylate. Initial cell encapsulation density impacted the ability for mESCs to grow and differentiate, with the greatest success occurring at higher cell densities. Microspheres differentiated into dense spheroidal ECTs with spontaneous contractions occurring as early as Day 10 of cardiac differentiation; furthermore, these ECT microspheres exhibited appropriate temporal changes in gene expression and response to pharmacological stimuli. These results demonstrate the ability to use an emulsion approach to encapsulate pluripotent stem cells for use in microsphere-based cardiac differentiation.
Collapse
Affiliation(s)
- Samuel Chang
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Ferdous Finklea
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Bianca Williams
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Hanna Hammons
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Alexander Hodge
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Samantha Scott
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| | - Elizabeth Lipke
- Department of Chemical Engineering, 212 Ross Hall, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
21
|
Duque‐Estrada P, School E, van der Goot AJ, Berton‐Carabin CC. Double emulsions for iron encapsulation: is a high concentration of lipophilic emulsifier ideal for physical and chemical stability? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4540-4549. [PMID: 30868581 PMCID: PMC6618118 DOI: 10.1002/jsfa.9691] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Worldwide iron deficiency in diets has led to a growing interest in the development of food-compatible encapsulation systems for soluble iron, which are able to prevent iron's undesirable off-taste and pro-oxidant activity. Here, we explore the use of double emulsions for this purpose, and in particular, how the lipophilic emulsifier (polyglycerol polyricinoleate, PGPR) concentration influences the physicochemical stability of water-in-oil-in-water (W1 /O/W2 ) double emulsions containing ferrous sulphate in the inner water droplets. Double emulsions were prepared with sunflower oil containing 10 to 70 g kg-1 PGPR in the oil phase, and were monitored for droplet size distribution, morphology, encapsulation efficiency (EE) and oxidative stability over time. RESULTS Fresh double emulsions showed an initial EE higher than 88%, but EE decreased upon storage, which occurred particularly fast and to a high extent in the emulsions prepared with low PGPR concentrations. All double emulsions underwent lipid oxidation, in particular those with the highest PGPR concentration, which could be due to the small inner droplet size and thus promoted contact between oil and the internal water phase. CONCLUSION These results show that a too high PGPR concentration is not needed, and sometimes even adverse, when developing double emulsions as iron encapsulation systems. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Eefje School
- Food Process EngineeringWageningen University & ResearchWageningenThe Netherlands
| | | | | |
Collapse
|
22
|
Giroux HJ, Shea R, Sabik H, Fustier P, Robitaille G, Britten M. Effect of oil phase properties on peptide release from water-in-oil-in-water emulsions in gastrointestinal conditions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Crystallizable W/O/W double emulsions made with milk fat: Formulation, stability and release properties. Food Res Int 2019; 116:145-156. [DOI: 10.1016/j.foodres.2018.08.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/03/2018] [Accepted: 08/07/2018] [Indexed: 02/03/2023]
|
24
|
Formation of Double (W1/O/W2) Emulsions as Carriers of Hydrophilic and Lipophilic Active Compounds. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2221-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Silva W, Torres-Gatica MF, Oyarzun-Ampuero F, Silva-Weiss A, Robert P, Cofrades S, Giménez B. Double emulsions as potential fat replacers with gallic acid and quercetin nanoemulsions in the aqueous phases. Food Chem 2018; 253:71-78. [DOI: 10.1016/j.foodchem.2018.01.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/01/2022]
|
26
|
Byrnes SA, Phillips EA, Huynh T, Weigl BH, Nichols KP. Polydisperse emulsion digital assay to enhance time to detection and extend dynamic range in bacterial cultures enabled by a statistical framework. Analyst 2018; 143:2828-2836. [DOI: 10.1039/c8an00029h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a simple method for preparing small-volume droplets for performing digital culture, allowing for the detection of bacteria.
Collapse
Affiliation(s)
| | | | - Toan Huynh
- Intellectual Ventures Laboratory
- Bellevue
- USA
| | | | | |
Collapse
|
27
|
Incorporation of water-in-oil-in-water (W 1 /O/W 2 ) double emulsion in a set-type yogurt model. Food Res Int 2017; 100:122-131. [DOI: 10.1016/j.foodres.2017.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 11/18/2022]
|
28
|
Zhu Q, Feng L, Saito M, Yin L. Preparation and characterization of W/O/W double emulsions containing MgCl2. J DISPER SCI TECHNOL 2017. [DOI: 10.1080/01932691.2017.1318076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qiaomei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Liping Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Masayoshi Saito
- Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Lijun Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
|
30
|
Li J, Zhu Y, Teng C, Xiong K, Yang R, Li X. The effects of biomacromolecules on the physical stability of W/O/W emulsions. Journal of Food Science and Technology 2017; 54:469-480. [PMID: 28242946 DOI: 10.1007/s13197-017-2488-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/21/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
The effect of bovine serum albumin (BSA), whey protein isolate (WPI), whey protein hydrolysate (WPH), sodium caseinate (SC), carboxymethylcellulose sodium (CMC), fish gelatin (FG), high methoxyl apple pectin (HMAP), low methoxyl apple pectin (LMAP), gum Arabic (GA), ι-carrageenan (CGN), and hydroxypropyl chitosan (HPCTS) on physical stability of internal or external aqueous phase of water-in-oil-in-water (W/O/W) emulsions was evaluated. WPI and CGN in the internal aqueous phase, and GA, HPCTS, and CMC in the external phase reduced the size of emulsion droplets. BSA, WPI, SC, FG, CGN, and HPCTS improved the dilution stability of W/O/W emulsions, but HMAP had a negative effect. BSA, WPI, SC, FG, LMAP, GA, CGN, HPCTS, or CMC significantly improved the thermal stability of W/O/W emulsions. Results also indicated that the addition of CGN (1.0%), HMAP (1.0%), WPH (1.0%), or HPCTS (1.0%) in internal aqueous phase significantly increased the viscosity of emulsions, however, addition to the external aqueous phase had insignificant effects. A protein-knockout experiment confirmed that proteins as biomacromolecules, were the key factor in improving physical stability of emulsions.
Collapse
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Ke Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Ran Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| |
Collapse
|
31
|
Controlled release of casein-derived peptides in the gastrointestinal environment by encapsulation in water-in-oil-in-water double emulsions. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.01.050] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Li J, Shi Y, Zhu Y, Teng C, Li X. Effects of Several Natural Macromolecules on the Stability and Controlled Release Properties of Water-in-Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3873-3880. [PMID: 27137850 DOI: 10.1021/acs.jafc.6b00956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Water-in-oil-in-water (W/O/W) emulsions are effective vehicles for embedding application of active compounds but limited by their thermodynamic instability and rapid release properties. The present study added bovine serum albumin, whey protein isolate, whey protein hydrolysate, sodium caseinate, carboxymethylcellulose sodium, fish gelatin, apple pectin, gum arabic, ι-carrageenan, and hydroxypropyl chitosan separately to the internal or external aqueous phase to investigate their effects on the physical stabilities and controlled release properties of W/O/W emulsions. The effects of the natural macromolecules in the internal and external aqueous phases were different and depended upon the macromolecule structure and its mass fraction. The addition of the natural macromolecule strengthened the interfaces of emulsions, which improved the physical stability. The natural macromolecules that improved the stability often did not improve controlled release. Therefore, the balance between these properties needs to be considered when adding natural macromolecules to a W/O/W emulsion.
Collapse
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients , Beijing 100048, People's Republic of China
| | - Yiheng Shi
- College of Food Science and Engineering, Northwest Agricultural and Forestry University , Yangling, Shanxi 712100, People's Republic of China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Key Laboratory of Flavor Chemistry , Beijing 100048, People's Republic of China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients , Beijing 100048, People's Republic of China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Key Laboratory of Flavor Chemistry , Beijing 100048, People's Republic of China
| |
Collapse
|
33
|
Altuntas OY, Sumnu G, Sahin S. Preparation and characterization of W/O/W type double emulsion containing PGPR–lecithin mixture as lipophilic surfactant. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1179121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ozlem Yuce Altuntas
- Middle East Technical University, Food Engineering Department, Ankara, Turkey
| | - Gulum Sumnu
- Middle East Technical University, Food Engineering Department, Ankara, Turkey
| | - Serpil Sahin
- Middle East Technical University, Food Engineering Department, Ankara, Turkey
| |
Collapse
|
34
|
Kadri HEL, Gun R, Overton TW, Bakalis S, Gkatzionis K. Modulating the release of Escherichia coli in double W1/O/W2 emulsion globules under hypo-osmotic pressure. RSC Adv 2016. [DOI: 10.1039/c6ra17091a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial release from double W1/O/W2 emulsion globules under hypo-osmotic pressure is described for the first time.
Collapse
Affiliation(s)
| | | | - Tim W. Overton
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection
- University of Birmingham
- UK
| | | | - Konstantinos Gkatzionis
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection
- University of Birmingham
- UK
| |
Collapse
|
35
|
Liau JJ, Hook S, Prestidge CA, Barnes TJ. A lipid based multi-compartmental system: Liposomes-in-double emulsion for oral vaccine delivery. Eur J Pharm Biopharm 2015; 97:15-21. [PMID: 26455337 DOI: 10.1016/j.ejpb.2015.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 08/27/2015] [Accepted: 09/30/2015] [Indexed: 01/28/2023]
Abstract
The gastric mucosa provides the entry point for the majority of pathogens, as well as being the induction site for protective immunity; however, there remain few examples of oral vaccines due to the challenges presented by the gastrointestinal route. In this study, we develop a lipid-based multi-compartmental system for oral vaccine delivery. Specifically, we have optimised the formulation of a water-in-oil-in-water double emulsion prepared from a triglyceride - soya bean oil, using surfactants Span 80/Tween 80 and Pluronic F127 to stabilise the internal and external water phases, respectively. Into the internal water phase, we also incorporated a PEGylated liposome, prepared using hydrogenated phosphatidyl choline as a carrier for our model protein, FITC-labelled ovalbumin. We demonstrated the successful incorporation of intact liposomes into the internal water phase of the double emulsion using imaging techniques including cryo-SEM and confocal microscopy. Finally, we use in vitro release studies of FITC-ovalbumin, to provide further confirmation of the multi-compartmental structure of the double emulsion system and demonstrate significant extended release of the entrapped model antigen compared with PEG-liposomes; these characteristics are attractive for oral vaccine delivery.
Collapse
Affiliation(s)
- Jin Jau Liau
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia.
| | - Sarah Hook
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia.
| | - Timothy J Barnes
- School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
36
|
Wang X, Jiang S, Wang X, Liao J, Yin Z. Preparation and evaluation of nattokinase-loaded self-double-emulsifying drug delivery system. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2015.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
37
|
Cárdenas-Bailón F, Osorio-Revilla G, Gallardo-Velázquez T. Microencapsulation of insulin using a W/O/W double emulsion followed by complex coacervation to provide protection in the gastrointestinal tract. J Microencapsul 2015; 32:308-16. [DOI: 10.3109/02652048.2015.1017619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
El Kadri H, Overton T, Bakalis S, Gkatzionis K. Understanding and controlling the release mechanism of Escherichia coli in double W1/O/W2emulsion globules in the presence of NaCl in the W2phase. RSC Adv 2015. [DOI: 10.1039/c5ra24469b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The results suggest that release of bacteria from W1/O/W2emulsion can be controlled by varying the formulation. Release occurs due to oil globule bursting independent to diffusion.
Collapse
Affiliation(s)
| | - Tim Overton
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection University of Birmingham
- UK
| | | | - Konstantinos Gkatzionis
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection University of Birmingham
- UK
| |
Collapse
|
39
|
Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. FOOD ENGINEERING REVIEWS 2014. [DOI: 10.1007/s12393-014-9106-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Bou R, Cofrades S, Jiménez-Colmenero F. Physicochemical properties and riboflavin encapsulation in double emulsions with different lipid sources. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.06.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Sahin S, Sawalha H, Schroën K. High throughput production of double emulsions using packed bed premix emulsification. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Giroux HJ, Constantineau S, Fustier P, Champagne CP, St-Gelais D, Lacroix M, Britten M. Cheese fortification using water-in-oil-in-water double emulsions as carrier for water soluble nutrients. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2012.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Davarpanah L, Vahabzadeh F. Formation of oil-in-water (O/W) pickering emulsions via complexation between β-cyclodextrin and selected organic solvents. STARCH-STARKE 2012. [DOI: 10.1002/star.201200027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
|
45
|
|