1
|
Rahmanzadeh E, Golbabaei F, Moussavi G, Faghihi Zarandi A, Dehghani F, Ghorbanian M. Modeling of hexavalent chromium removal onto natural zeolite from air stream in a fixed bed column. Sci Rep 2024; 14:19836. [PMID: 39191983 DOI: 10.1038/s41598-024-70765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
The increasing use of hexavalent chromium (Cr(VI)) has exposed large populations to this environmental and occupational carcinogenic agent. Therefore, researchers have been interested in removing this substance through adsorbents. This study aimed to investigate the efficiency of natural zeolite in the direct adsorption of Cr(VI) from airflow and its adsorption modeling. In this study, a nebulizer device produced the Cr(VI) mist. The efficiency of natural zeolite in Cr(VI) adsorption from airflow, modeling of fixed column adsorption, and the effective parameters on adsorption efficiency including the initial concentration of chromium, airflow rate, and adsorption bed depth were studied. To facilitate the prediction of the performance of natural zeolite's adsorption column, Yoon-Nelson, Thomas, BDST, and Buhart-Adams models were used. The results showed that the adsorption capacity diminished with increased airflow rate and initial concentration, while it increased with elevated height of the adsorption bed. Yoon-Nelson, Thomas, and BDST models corresponded to experimental data with a correlation coefficient of 0.9933, but the information of the Buhart-Adams model had a lower correlation coefficient (around 0.6677). In conclusion, natural zeolite can be used as an efficient low-cost adsorbent for directly Cr(VI) removing from the airflow in a fixed bed column.
Collapse
Affiliation(s)
- Elham Rahmanzadeh
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Golbabaei
- Department of Occupational Health and Safety Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Moussavi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Faghihi Zarandi
- Department of Occupational Health and Safety Engineering, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Dehghani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Ghorbanian
- Department of Environmental Health Engineering, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
2
|
Sutthasupa S, Koo-Amornpattana W, Worasuwannarak N, Prachakittikul P, Teachawachirasiri P, Wanthong W, Thungthong T, Inthapat P, Chanamarn W, Thawonbundit C, Srifa A, Ratchahat S, Chaiwat W. Sugarcane bagasse-derived granular activated carbon hybridized with ash in bio-based alginate/gelatin polymer matrix for methylene blue adsorption. Int J Biol Macromol 2023; 253:127464. [PMID: 37852399 DOI: 10.1016/j.ijbiomac.2023.127464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Sugarcane bagasse (SCB) and sugarcane bagasse ash (SCB-ash) are major agricultural residues from sugar processing industries in Thailand. In this study, SCB-derived activated carbon (SCBAC) with the optimum surface area of 489 m2/g was prepared by steam activation at 900 °C for 1 h. Hybrid granular activated carbons (GACs) were successfully developed by mixing SCBAC with bio-based polymers, alginate and gelatin, at the weight ratio of 3:1 for methylene blue (MB) adsorption. SCB-ash, which was additionally mixed in the GACs, could significantly increase compressive strength of the GACs, but decrease their surface areas and MB adsorption efficiencies. An existence of gelatin up to 30 wt% in the polymer matrix of the GACs showed a slight increase in swelling degree and iodine number, but could not enhance bead strength and MB adsorption efficiency due to its relatively lower bulk density and specific surface area. Maximum MB adsorption capacities of the GACs were found at 290-403 mg/g under this study's experimental condition. MB adsorption efficiencies at above 90 % with no deformation of all of the selected SCB hybrid GACs were finally confirmed after seven consecutive adsorption-desorption cycles using a simple regeneration with ethanol.
Collapse
Affiliation(s)
- Sutthira Sutthasupa
- Division of Packaging Technology, Faculty of Agro Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Wanida Koo-Amornpattana
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Nakorn Worasuwannarak
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pensiri Prachakittikul
- Division of Environmental Engineering and Disaster Management, Mahidol University, Kanchanaburi Campus, Kanchanaburi 71150, Thailand
| | - Preut Teachawachirasiri
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Woramet Wanthong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Thiti Thungthong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Pimonpan Inthapat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wilasinee Chanamarn
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chalongrat Thawonbundit
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Atthapon Srifa
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sakhon Ratchahat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Weerawut Chaiwat
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
3
|
Thrikkykkal H, Antu R, P S H. Remediation of Pb (II), Cd (II), and Zn (II) from aqueous solutions using porous (styrene-divinylbenzene)/Cu-Ni bimetallic nanocomposite microspheres: continuous fixed-bed column study. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2277-2291. [PMID: 37186630 PMCID: wst_2023_101 DOI: 10.2166/wst.2023.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bimetallic nanoparticles (BNPs) have been used as a new line of defence against heavy metal contamination among several types of nanoparticles (NPs) due to their enhanced, synergistic activity. In this study, we investigated the adsorption behaviour of porous (styrene-divinylbenzene)/CuNi bimetallic nanocomposite (P(St-DVB)/CuNi BNC) in a continuous flow fixed-bed column and its ability to remove Pb (II), Cd (II), and Zn (II) ions from aqueous solutions. We examined how the initial metal concentration, flow rate, and bed height affected the adsorption characteristics. Experimental results confirmed that the adsorption capacity increased with increase in influent metal concentration and bed height and decreased with increase in flow rate. The breakthrough and the column kinetic parameters were successfully predicted with three mathematical models: Thomas, Yoon-Nelson, and Adams-Bohart models. Both Thomas and Yoon-Nelson models showed good agreement with the experimental results for all the operating conditions. Successful desorption of heavy metals from the P(St-DVB)/CuNi BNC was performed using 0.5 M NaOH solution, and it showed good reusability of the adsorbent during four adsorption-desorption cycles. The results show that P(St-DVB)/CuNi BNC are effective and low-cost adsorbents, and they can be used in real-time large-scale industrial water treatment processes for the removal of heavy metals.
Collapse
Affiliation(s)
- Hridya Thrikkykkal
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam, Kozhikode, Kerala 673 571, India E-mail:
| | - Rosmin Antu
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam, Kozhikode, Kerala 673 571, India E-mail:
| | - Harikumar P S
- Ecology and Environment Research Group, Centre for Water Resources Development and Management, Kunnamangalam, Kozhikode, Kerala 673 571, India E-mail:
| |
Collapse
|
4
|
Myint Zaw M, Poorahong S, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. A simple gelatin aerogel tablet sorbent for the effective vortex assisted solid phase extraction of polycyclic aromatic hydrocarbons from tea samples. Food Chem 2022; 383:132388. [DOI: 10.1016/j.foodchem.2022.132388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/07/2022] [Accepted: 02/06/2022] [Indexed: 01/22/2023]
|
5
|
Liu L, Ma J, Yu X, Zhang T, Mkandawire V, Li X. Dynamic Adsorption Properties of Insoluble Humic Acid/Tourmaline Composite Particles for Iron and Manganese in Mine Wastewater. MATERIALS 2022; 15:ma15124338. [PMID: 35744397 PMCID: PMC9231116 DOI: 10.3390/ma15124338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
Iron- and manganese-contaminated mine water is widespread around the world, and economical and efficient remediation has become a priority. Insoluble humic acid/tourmaline composite particles (IHA/TM) were prepared by combining inorganic tourmaline (TM) with the natural organic polymer humic acid (HA), and the effects of different calcination temperatures and calcination times of TM and IHA on the adsorption of Fe2+ and Mn2+ were analyzed. Based on the microscopic characterization of Scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Brunnauer–Emmet–Teller (BET), X-ray diffractometer (XRD) and Fourier transform infrared (FTIR), the simultaneous adsorption performance of IHA/TM on Fe2+ and Mn2+ was studied through dynamic adsorption tests, and a dynamic adsorption model was established. Adsorption regeneration experiments were carried out to further investigate the effectiveness of the composite particles in practical applications. The results show that, when the calcination temperature was 330 °C and the calcination time was 90 min, the removal rates of iron and manganese by the IHA/TM composite particles reached 99.85% and 99.51%, respectively. The curves for penetration of Fe2+ and Mn2+ ions into the IHA/TM composite particles were affected by the bed height, flow rate and influent concentration. Decreasing the flow rate, decreasing the influent concentration, or increasing the bed height prolonged the operation time of the dynamic column. If the bed height was too low, the penetration point was reached before the expected treatment was achieved, and when the bed height was too high, the removal of Fe2+ and Mn2+ was slow, and the utilization rate of the adsorbent was also reduced. If the flow rate was too low, longitudinal remixing easily occurred in the column. However, when the flow rate was too high, the speed of Fe2+ and Mn2+ ions passing through the adsorption layer increased, which reduced the total amount of adsorption. The increase in influent concentration not only reduces the removal rate, but also greatly shortens the total operation time of the dynamic column and reduces the treatment water. The dynamic process for the adsorption of Fe2+ and Mn2+ by IHA/TM was fitted best by the Thomas model. The adsorption column was continuously regenerated five times, and the results show that the IHA/TM composite particles were suitable for iron and manganese removal from mine wastewater. The research results will provide a reference for the effectiveness of the IHA/TM composite particles in practical applications.
Collapse
Affiliation(s)
- Ling Liu
- School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Jiadi Ma
- School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Xiaowan Yu
- School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
- Information Industry Electronics Eleventh Design and Research Institute Technology Engineering Co., Ltd., Dalian Branch, Dalian 116000, China
| | - Tianyi Zhang
- School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
| | - Vitumbiko Mkandawire
- School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
- Water Services Association of Malawi, Tikwere House, City Center, Private Bag 390, Lilongwe 207213, Malawi
| | - Xilin Li
- School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
| |
Collapse
|
6
|
Hu Y, Zhi M, Chen S, Lu W, Lai Y, Wang X. Efficient removal of Cr(VI) by spent coffee grounds: Molecular adsorption and reduction mechanism. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Mahmoud MA. Separation of Cd (II) onto Polypyrrole nitrogen porous carbon composite in the continuous column system. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2021.1978811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohamed Ahmed Mahmoud
- Chemical Engineering Department, College of Engineering, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
8
|
Iron-Loaded Carbon Aerogels Derived from Bamboo Cellulose Fibers as Efficient Adsorbents for Cr(VI) Removal. Polymers (Basel) 2021; 13:polym13244338. [PMID: 34960889 PMCID: PMC8703939 DOI: 10.3390/polym13244338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
A unique iron/carbon aerogel (Fe/CA) was prepared via pyrolysis using ferric nitrate and bamboo cellulose fibers as the precursors, which could be used for high-efficiency removal of toxic Cr(VI) from wastewaters. Its composition and crystalline structures were characterized by FTIR, XPS, and XRD. In SEM images, the aerogel was highly porous with abundant interconnected pores, and its carbon-fiber skeleton was evenly covered by iron particles. Such structures greatly promoted both adsorption and redox reaction of Cr(VI) and endowed Fe/CA with a superb adsorption capacity of Cr(VI) (182 mg/g) with a fast adsorption rate (only 8 min to reach adsorption equilibrium), which outperformed many other adsorbents. Furthermore, the adsorption kinetics and isotherms were also investigated. The experiment data could be much better fitted by the pseudo-second-order kinetics model with a high correlating coefficient, suggesting that the Cr(VI) adsorption of Fe/CA was a chemical adsorption process. Meanwhile, the Langmuir model was found to better describe the isotherm curves, which implied the possible monolayer adsorption mechanism. It is noteworthy that the aerogel adsorbent as a bulk material could be easily separated from the water after adsorption, showing high potential in real-world water treatment.
Collapse
|
9
|
Ullah R, Ahmad W, Yaseen M, Khan M, Iqbal Khattak M, Mohamed Jan B, Ikram R, Kenanakis G. Fabrication of MNPs/rGO/PMMA Composite for the Removal of Hazardous Cr(VI) from Tannery Wastewater through Batch and Continuous Mode Adsorption. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6923. [PMID: 34832323 PMCID: PMC8620348 DOI: 10.3390/ma14226923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of magnetic nanoparticle (MNP)-reduced graphene oxide (rGO) and polymethylmethacrylate (PMMA) composite (MNPs/rGO/PMMA) as adsorbent via an in situ fabrication strategy and, in turn, the application for adsorptive removal and recovery of Cr(VI) from tannery wastewater. The composite material was characterized via XRD, FTIR and SEM analyses. Under batch mode experiments, the composite achieved maximum adsorption of the Cr(VI) ion (99.53 ± 1.4%, i.e., 1636.49 mg of Cr(VI)/150 mg of adsorbent) at pH 2, adsorbent dose of 150 mg/10 mL of solution and 30 min of contact time. The adsorption process was endothermic, feasible and spontaneous and followed a pseudo-2nd order kinetic model. The Cr ions were completely desorbed (99.32 ± 2%) from the composite using 30 mL of NaOH solution (2M); hence, the composite exhibited high efficiency for five consecutive cycles without prominent loss in activity. The adsorbent was washed with distilled water and diluted HCl (0.1M), then dried under vacuum at 60 °C for reuse. The XRD analysis confirmed the synthesis and incorporation of magnetic iron oxide at 2θ of 30.38°, 35.5°, 43.22° and 57.36°, respectively, and graphene oxide (GO) at 25.5°. The FTIR analysids revealed that the composite retained the configurations of the individual components, whereas the SEM analysis indicated that the magnetic Fe3O4-NPs (MNPs) dispersed on the surface of the PMMA/rGO sheets. To anticipate the behavior of breakthrough, the Thomas and Yoon-Nelson models were applied to fixed-bed column data, which indicated good agreement with the experimental data. This study evaluates useful reference information for designing a cost-effective and easy-to-use adsorbent for the efficient removal of Cr(VI) from wastewater. Therefore, it can be envisioned as an alternative approach for a variety of unexplored industrial-level operations.
Collapse
Affiliation(s)
- Rahman Ullah
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Waqas Ahmad
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; (R.U.); (M.Y.)
| | - Mansoor Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan;
| | - Mehmood Iqbal Khattak
- Material Science Center (PCSIR) Laboratories Complex, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan;
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-70013 Heraklion, Crete, Greece;
| |
Collapse
|
10
|
Mahmoud MA. Separation of Cd (II) from aqueous solution by keratin magnetic froth carbon in the batch and continuous system. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Rigueto CVT, Nazari MT, Rosseto M, Massuda LA, Alessandretti I, Piccin JS, Dettmer A. Emerging contaminants adsorption by beads from chromium (III) tanned leather waste recovered gelatin. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Imran M, Khan ZUH, Iqbal MM, Iqbal J, Shah NS, Munawar S, Ali S, Murtaza B, Naeem MA, Rizwan M. Effect of biochar modified with magnetite nanoparticles and HNO 3 for efficient removal of Cr(VI) from contaminated water: A batch and column scale study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114231. [PMID: 32113112 DOI: 10.1016/j.envpol.2020.114231] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 05/22/2023]
Abstract
Chromium (Cr) poses serious consequences on human and animal health due to its potential carcinogenicity. The present study aims at preparing a novel biochar derived from Chenopodium quinoa crop residues (QBC), its activation with magnetite nanoparticles (QBC/MNPs) and strong acid HNO3 (QBC/Acid) to evaluate their batch and column scale potential to remove Cr (VI) from polluted water. The QBC, QBC/MNPs and QBC/Acid were characterized with SEM, FTIR, EDX, XRD as well as point of zero charge (PZC) to get an insight into their adsorption mechanism. The impact of different process parameters including dose of the adsorbent (1-4 g/L), contact time (0-180 min), initial concentration of Cr (25-200 mg/L) as well as solution pH (2-8) was evaluated on the Cr (VI) removal from contaminated water. The results revealed that QBC/MNPs proved more effective (73.35-93.62-%) for the Cr (VI) removal with 77.35 mg/g adsorption capacity as compared with QBC/Acid (55.85-79.8%) and QBC (48.85-75.28-%) when Cr concentration was changed from 200 to 25 mg/L. The isothermal experimental results follow the Freundlich adsorption model rather than Langmuir, Temkin and Dubinin-Radushkevich adsorption isotherm models. While kinetic adsorption results were well demonstrated by pseudo second order kinetic model. Column scale experiments conducted at steady state exhibited excellent retention of Cr (VI) by QBC, QBC/MNPs and QBC/Acid at 50 and 100 mg Cr/L. The results showed that this novel biochar (QBC) and its modified forms (QBC/Acid and QBC/MNPs) are applicable with excellent reusability and stability under acidic conditions for the practical treatment of Cr (VI) contaminated water.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Muhammad Mohsin Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Saba Munawar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology China Medical University (CMU) Taichung Taiwan, China
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Muhammad Asif Naeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari-Campus, 61100, Vehari, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
13
|
Mahanty S, Bakshi M, Ghosh S, Gaine T, Chatterjee S, Bhattacharyya S, Das S, Das P, Chaudhuri P. Mycosynthesis of iron oxide nanoparticles using manglicolous fungi isolated from Indian sundarbans and its application for the treatment of chromium containing solution: Synthesis, adsorption isotherm, kinetics and thermodynamics study. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Wu B, Peng D, Hou S, Tang B, Wang C, Xu H. Dynamic study of Cr(VI) removal performance and mechanism from water using multilayer material coated nanoscale zerovalent iron. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:717-724. [PMID: 29778057 DOI: 10.1016/j.envpol.2018.04.099] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In this study, the dynamic Cr(VI) removal process from water by the synthesized multilayer material coated nanoscale zerovalent iron (SBC-nZVI) was systematically discussed at different treatment conditions. The results showed that initial pH, contact time, Cr(VI) concentration and the dosage of SBC-nZVI were important parameters that influenced the Cr(VI) removal efficiency. The major Cr(VI) removal occurred within 60 min and gradually tend to equilibrium with consistent treatment. The removal efficiency was highly depended on pH values and the adsorption kinetics agreed well with the pseduo-second-order model (PSO). When the initial Cr(VI) concentration was below 15 mg/L, the removal rate could reach to about 100%. Moreover, the removal efficiency increased with the increase of SBC-nZVI dosage, which related to the increase of reactive sites. To understand the removal mechanism, SBC-nZVI before and after reaction with Cr(VI) were characterized by fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS). These analysis showed that the interaction of SBC-nZVI with Cr(VI) was mainly controlled by reduction and electrostatic attraction. Therefore, these results explained the interaction between Cr(VI) and SBC-nZVI material in detail, and further proved that SBC-nZVI could be an effective material to remove Cr(VI) from water.
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Siyu Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Bicong Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Can Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
15
|
Ozer C, Boysan F, Imamoglu M, Yildiz SZ. Enhanced Adsorption of Hexavalent Chromium Ions on Polyamine Polyurea Polymer: Isotherm, Kinetic, Thermodynamic Studies and Batch Processing Design. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1066258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Mahmoud MR, Lazaridis NK. Simultaneous Removal of Nickel(II) and Chromium(VI) from Aqueous Solutions and Simulated Wastewaters by Foam Separation. SEP SCI TECHNOL 2015. [DOI: 10.1080/01496395.2014.978456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Xu Y, Zhang Y, Feng Q. The dynamic adsorption performance of the cross-linked starch/acrylonitrile graft copolymer for copper ions in water. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Bhaumik M, Setshedi K, Maity A, Onyango MS. Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.02.037] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Cao CY, Qu J, Yan WS, Zhu JF, Wu ZY, Song WG. Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:4573-9. [PMID: 22316432 DOI: 10.1021/la300097y] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Flowerlike α-Fe(2)O(3) nanostructures were synthesized via a template-free microwave-assisted solvothermal method. All chemicals used were low-cost compounds and environmentally benign. These flowerlike α-Fe(2)O(3) nanostructures had high surface area and abundant hydroxyl on their surface. When tested as an adsorbent for arsenic and chromium removal, the flowerlike α-Fe(2)O(3) nanostructures showed excellent adsorption properties. The adsorption mechanism for As(V) and Cr(VI) onto flowerlike α-Fe(2)O(3) nanostructures was elucidated by X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption near edge structure analysis. The results suggested that ion exchange between surface hydroxyl groups and As(V) or Cr(VI) species was accounted for by the adsorption. With maximum capacities of 51 and 30 mg g(-1) for As(V) and Cr(VI), respectively, these low-cost flowerlike α-Fe(2)O(3) nanostructures are an attractive adsorbent for the removal of As(V) and Cr(VI) from water.
Collapse
Affiliation(s)
- Chang-Yan Cao
- Beijing National Laboratory for Molecular Science (BNLMS), Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Cao CY, Li P, Qu J, Dou ZF, Yan WS, Zhu JF, Wu ZY, Song WG. High adsorption capacity and the key role of carbonate groups for heavy metal ion removal by basic aluminum carbonate porous nanospheres. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34138g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|