1
|
Mackay SE, Malherbe F, Eldridge DS. Quaternary amine functionalized chitosan for enhanced adsorption of low concentration phosphate to remediate environmental eutrophication. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Sadeghalvad B, Khorshidi N, Azadmehr A, Sillanpää M. Sorption, mechanism, and behavior of sulfate on various adsorbents: A critical review. CHEMOSPHERE 2021; 263:128064. [PMID: 33297069 DOI: 10.1016/j.chemosphere.2020.128064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Sulfate decontamination has drawn widespread attention due to its harmful effects by broad human and animal exposure in recent decades. Adsorption is one of the most promising methods for sulfate decontamination. This review categorized various sulfate adsorbents, discussed the adsorption behavior, and introduced effective adsorbents in detail in terms of their preparation, characterization, and affecting factors on adsorption efficiency. Moreover, adsorption mechanisms of sulfate on different adsorbents are reviewed based on the intermolecular interaction, equilibrium, thermodynamic, and kinetic studies. Among natural bioadsorbents, synthesized-organic, and synthesized-inorganic adsorbents chitin-based shrimp shells (156 mg/g), bagasse pith cellulose-based (526.32 mg/g), and ZrO(OH)2/Y-Zeolite (284.22 mg/g) showed the significant capacity for sulfate uptake from aqueous solution, respectively. Although natural adsorbents have been proved to be inexpensive and efficient, they are not as popular as synthesized adsorbents for sulfate decontamination in recent years due to their low recoverability and reusability. The adsorption mechanism of sulfate to various adsorbents is generally attributed to electrostatic interactions, covalent or ionic bonding, and hydrogen bonding. Based on equilibrium studies, sulfate adsorption processes were done mainly homogeneously for most of the adsorbents; however, there are some exceptions of the heterogeneous adsorption process of sulfate, which is done mostly for adsorbents that remove sulfate through hydrogen and covalent bonding. The kinetic studies illustrated that both film diffusion and pore-diffusion could control sulfate uptake by the various adsorbents. The thermodynamic studies showed that the sulfate adsorption is endothermic and spontaneous except for the sulfate removal by polypyrrole-modified activated-carbons and LDH-HPI mine waste, which requires energy for adsorption.
Collapse
Affiliation(s)
- Bahareh Sadeghalvad
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA.
| | - Niyayesh Khorshidi
- Department of Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran, 424 Hafez Avenue, Tehran, Iran.
| | - Amirreza Azadmehr
- Department of Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran, 424 Hafez Avenue, 1875-4413, Tehran, Iran.
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa.
| |
Collapse
|
3
|
Yousif AM, Zaid OF, El-Said WA, Elshehy EA, Ibrahim IA. Silica Nanospheres-Coated Nanofibrillated Cellulose for Removal and Detection of Copper(II) Ions in Aqueous Solutions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ahmed M. Yousif
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
- Chemistry Department, College of Science and Arts, Jouf University, Alqurayyat, Saudi Arabia
| | - Osama F. Zaid
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Waleed A. El-Said
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Chemistry Department, Faculty of Science, University of Jeddah, P.O. 80327, Jeddah 21589, Saudi Arabia
| | - Emad A. Elshehy
- Nuclear Materials Authority, P.O. Box 530,
Maadi, Cairo, Egypt
| | - Ibrahim A. Ibrahim
- Central Metallurgical Research & Development Institute (CMRDI), Helwan 11421, Egypt
| |
Collapse
|
4
|
Lanthanum (III) encapsulated chitosan-montmorillonite composite for the adsorptive removal of phosphate ions from aqueous solution. Int J Biol Macromol 2018; 112:284-293. [DOI: 10.1016/j.ijbiomac.2018.01.138] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/08/2018] [Accepted: 01/19/2018] [Indexed: 11/23/2022]
|