1
|
Moradi SE, Hosseini S, Akhlaghi N, Narimani M, Golab EG. Ionic liquids adsorption and interfacial tension reduction for synthetic resinous and asphaltenic oils: salinity and pH effects. Sci Rep 2024; 14:9420. [PMID: 38658645 PMCID: PMC11043354 DOI: 10.1038/s41598-024-59472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
The effects of sulfate salts under low and high salinity conditions and pH of 3.5-11 on interfacial tension (IFT) reduction and IL adsorption using resinous (RSO) and asphaltenic (8 wt/wt%) synthetic oils are investigated. The measurements showed the increasing effect of pH on the IFT of RSO/DW from 23.5 to 27.3 mN/m (pH = 3.5 → 7) in the first place and a reducing effect (0.4 mN/m) if pH = 7 → 11. Using a high concentration of 50,000 ppm for MgSO4, and Na2SO4 revealed an extensive IFT reduction for a pH value of 11 with the value of 0.20 mN/m for Na2SO4. The measured IFT values showed the significant impact of IL (500 ppm) on the IFT (minimum value of 0.01 mN/m for RSO/50,000 Na2SO4 + 500 ppm 1-decyl-3-methyl imidazolium triflate ([C10mim][TfO])) for pH = 11. The IL adsorption measurements showed the role of in-situ surfactant production (saponification process) on the 1-decyl-3-methyl imidazolium chloride ([C10mim][Cl]) and [C10mim][TfO] adsorption reduction from 3.67 to 2.33 and 4.21 to 3.34 mg IL/g rock, respectively. The performed core flooding experiments using the optimum chemical formulation showed the possibility of tertiary oil recovery with maximum oil recovery of 28.8% based on original oil in place in the presence of 500 ppm.
Collapse
Affiliation(s)
- Seyed Ehsan Moradi
- Department of Chemical Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Seyednooroldin Hosseini
- Department of Petroleum Engineering, EOR Research Center, Omidiyeh Branch, Islamic Azad University, Box Post: 164, Omidiyeh, 63731-93719, Khuzestan, Iran.
| | - Naser Akhlaghi
- Department of Petroleum Engineering, EOR Research Center, Omidiyeh Branch, Islamic Azad University, Box Post: 164, Omidiyeh, 63731-93719, Khuzestan, Iran
| | - Mostafa Narimani
- Department of Chemical Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | - Elias Ghaleh Golab
- Department of Petroleum Engineering, EOR Research Center, Omidiyeh Branch, Islamic Azad University, Box Post: 164, Omidiyeh, 63731-93719, Khuzestan, Iran
| |
Collapse
|
2
|
Wang R, Zheng Y, Liu X, Chen T, Li N, Lin J, Lin JM. In situ polymerized ionic liquids in polyester fiber composite membranes for detection of trace oil. iScience 2023; 26:106776. [PMID: 37235046 PMCID: PMC10206487 DOI: 10.1016/j.isci.2023.106776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In situ trace detection on ultra-clean surfaces is an important technology. The polyester fiber (PF) was introduced to serve as the template, to which the ionic liquids were bonded by hydrogen bonding. Polymerized ionic liquids (PIL) in PF were formed by in situ polymerization with the azodiisobutyronitrile (AIBN) and IL. The trace oil on metal surfaces was enriched by the composite membrane based on similar compatibility principle. The absolute recovery of the trace oil ranged from 91%-99% using this composite membrane. In the extraction samples, desirable linear correlations were obtained for trace oil in the range of 1.25-20 mg/mL. It has been proven that a 1 cm2 PIL-PF composite membrane can effectively extract as little as 1 mg of lubricating oil on an ultra-clean metal surface of 0.1 m2 with the LOD of 0.9 mg/mL, making it a promising material for in situ detection of trace oil on metal surfaces.
Collapse
Affiliation(s)
- Ruying Wang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yajing Zheng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xuejiao Liu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Tongwang Chen
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Nan Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jing Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Utilization of ionic liquids and deep eutectic solvents in oil operations: Progress and challenges. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Hu K, Ouyang M, Jiang Q, Zhang H, Kong M, Wang G, Zhuang L. Experimental and DFT studies on micellization features of anionic surface active ionic liquid and nonionic surfactant mixtures: Effect of imidazolium cations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Experimental and DFT studies on foam performances of lauryl ether sulfate-based anionic surface active ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|