1
|
Manikandan S, Jose PA, Karuppaiah A, Rahman H. The effect of physical stability and modified gastrointestinal tract behaviour of resveratrol-loaded NLCs encapsulated alginate beads. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9007-9021. [PMID: 38878088 DOI: 10.1007/s00210-024-03223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/04/2024] [Indexed: 10/30/2024]
Abstract
Nanostructured lipid carriers (NLC) have low storage and gastrointestinal stability, limiting their applicability. The work aimed to elevate the stability and behaviour of NLC in the alimentary tract by creating an alginate bead. Through the extrusion dropping procedure, Resveratrol (RES)-loaded NLC were efficiently integrated into alginate beads. The incorporation had no significant impact on the particle size, morphology, or inner structure of NLC, as assessed using DLS (Dynamic Light Scattering), SEM (Scanning Electron Microscopy), Differential Scanning Calorimetry (DSC) and FT-IR (Fourier Transform Infra-Red). Incorporating NLC into alginate beads improves its physical stability compared to dispersion of NLC as well as NLC-Sol. An in vitro release investigation found that the NLC-alginate beads released RES more slowly than optimized NLC formulation (RES-NLCs-opt) and NLC-alginate sol. Research on simulated in vitro digestive models revealed that just a small amount of integrated NLC may permeate stomach fluid due to its tiny size. The slow diffusion of NLC from alginate to intestinal fluid prevented aggregation and allowed for gentle hydrolysis of the lipid matrix. Incorporating NLC in alginate beads shows promise for improving stability, modifying gastrointestinal behaviour, and controlling release throughout the process of digestion.
Collapse
Affiliation(s)
- Sangeethkumar Manikandan
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, 641004, Tamil Nadu, India
| | - Preethy Ani Jose
- Department of Pharmaceutics, MNR College of Pharmacy, MNR Nagar, Fasalwadi, Sangareddy, Hyderabad, 502294, Telangana, India
| | - Arjunan Karuppaiah
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, 641004, Tamil Nadu, India.
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia.
| | - Habibur Rahman
- Department of Pharmaceutics, PSG College of Pharmacy, Peelamedu, Coimbatore, 641004, Tamil Nadu, India.
| |
Collapse
|
2
|
Ye ZW, Yang QY, Lin QH, Liu XX, Li FQ, Xuan HD, Bai YY, Huang YP, Wang L, Wang F. Progress of nanopreparation technology applied to volatile oil drug delivery systems. Heliyon 2024; 10:e24302. [PMID: 38293491 PMCID: PMC10825498 DOI: 10.1016/j.heliyon.2024.e24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Traditional Chinese medicine volatile oil has a long history and possesses extensive pharmacological activity. However, volatile oils have characteristics such as strong volatility, poor water solubility, low bioavailability, and poor targeting, which limit their application. The use of volatile oil nano drug delivery systems can effectively improve the drawbacks of volatile oils, enhance their bioavailability and chemical stability, and reduce their volatility and toxicity. This article first introduces the limitations of the components of traditional Chinese medicine volatile oils, discusses the main classifications and latest developments of volatile oil nano formulations, and briefly describes the preparation methods of traditional Chinese medicine volatile oil nano formulations. Secondly, the limitations of nano formulation technology are discussed, along with future challenges and prospects. A deeper understanding of the role of nanotechnology in traditional Chinese medicine volatile oils will contribute to the modernization of volatile oils and broaden their application value.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Chinese Medicine, 610072, China
| | - Qiao-Hong Lin
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Xiao-Xia Liu
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Feng-Qin Li
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Hong-Da Xuan
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ying-Yan Bai
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ya-Peng Huang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Le Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Fang Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| |
Collapse
|
3
|
Talesh AA, Amiri S, Radi M, Hosseinifarahi M. Effect of nanocomposite alginate-based edible coatings containing thymol-nanoemulsion and/or thymol-loaded nanostructured lipid carriers on the microbial and physicochemical properties of carrot. Int J Biol Macromol 2024:129196. [PMID: 38184040 DOI: 10.1016/j.ijbiomac.2023.129196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/15/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
In this study, the effect of thymol-nanoemulsion (NE) and thymol-loaded nanostructured lipid carriers (NLC) on the physiological and microbial quality of carrot was investigated. The NE and NLC droplet sizes were 86 and 140 nm with encapsulation efficiency of 97 and 94 %, respectively. The minimum inhibitory concentration and minimum bactericidal concentration of thymol decreased in NE and increased in NLC against E. coli and S. aureus. Moreover, thymol-containing coatings exhibited a higher peroxidase activity, total phenolic content, flavonoid content, DPPH radical scavenging activity, pH, and lower respiration rate, TSS, weight loss, and decay with the preference for samples coated with NLC and NE (particularly NLC). The NE and NLC treatments significantly reduced the total viable, mold and yeast, lactic acid bacteria, and Enterobacteriaceae counts compared to the free thymol-containing coating. Results showed that the application of NE and NLC containing alginate-based coating (with the preference for NLC) improved the postharvest quality of carrot and extended its shelf life. Meanwhile, the separate application of these systems gave better results than the simultaneous application of both systems in one sample.
Collapse
Affiliation(s)
- Alireza Amiri Talesh
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Sedigheh Amiri
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
| | - Mohsen Radi
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran.
| | - Mehdi Hosseinifarahi
- Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran; Department of Horticultural Science, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| |
Collapse
|
4
|
Pervaiz S, Bibi I, Rehman W, Alotaibi HF, Obaidullah AJ, Rasheed L, M Alanazi M. Controlled Size Oils Based Green Fabrication of Silver Nanoparticles for Photocatalytic and Antimicrobial Application. Antibiotics (Basel) 2023; 12:1090. [PMID: 37508186 PMCID: PMC10376193 DOI: 10.3390/antibiotics12071090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The particle size at the nanometric level allows the manifestation of remarkable properties, chiefly due to changes in surface-to-volume ratio. This study is attributed to the novel green synthesis of nano silver by using essential oils as a capping and reducing agent. Clove oil, cinnamon oil, and cardamom oil were selected for the eco-friendly and low-cost fabrication of silver nanoparticles. The prepared nanoparticles were characterized by photoluminescence spectroscopy, FT-IR spectroscopy, X-Ray diffraction, energy dispersive X-ray spectroscopy, dynamic laser light scattering, thermogravimetric analysis, and transmission electron microscopy. It was found that samples prepared by using cinnamon oil (20 nm) and cardamom oil (12 nm) had smaller particle sizes as compared to those synthesized by using clove oil (45 nm). All the prepared samples exhibited very strong antimicrobial activities with a clear zone of inhibition (6-24 mm) against Staphylococcus aureus, Klebsiella pneumoniae, and Candida albicans. Very resilient photocatalytic activities of the samples were observed against Allura red and fast green dyes. It was concluded that the cinnamon oil-based system is the best size reducer and size homogenizer (less chances of agglomeration) as compared to clove oil and cardamom oil (more chances of agglomeration) for the synthesis of silver nanoparticles.
Collapse
Affiliation(s)
- Seemab Pervaiz
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
- Department of Conservation Studies, Hazara University, Mansehra 21120, Pakistan
| | - Iram Bibi
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Liaqat Rasheed
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Abdullah, Ahmad N, Tian W, Zengliu S, Zou Y, Farooq S, Huang Q, Xiao J. Recent advances in the extraction, chemical composition, therapeutic potential, and delivery of cardamom phytochemicals. Front Nutr 2022; 9:1024820. [PMID: 36245491 PMCID: PMC9562589 DOI: 10.3389/fnut.2022.1024820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary phytochemicals including plant-derived alkaloids, carotenoids, organosulfur compounds, phenolics, and phytosterols, are health-promoting bioactive compounds that help in the prevention and mitigation of chronic diseases and microbial infections beyond basic nutrition supply. This article covers recent advances in the extraction, chemical composition, therapeutic potential (nutraceutical and antimicrobial), and delivery of black and green cardamom-derived phytochemicals. In recent years, advance extraction techniques (e.g., enzyme- assisted-, instant controlled pressure drop-, microwave- assisted-, pressurized liquid-, sub- critical-, supercritical fluid-, and ultrasound-assisted extractions) have been applied to obtain phytochemicals from cardamom. The bioactive constituents identification techniques, specifically GC-MS analysis revealed that 1,8-cineole and α-terpinyl acetate were the principle bioactive components in black and green cardamom. Regarding therapeutic potential, research findings have indicated desirable health properties of cardamom phytochemicals, including antioxidant-, anti-hypercholesterolemic, anti-platelet aggregation, anti-hypertensive, and gastro-protective effects. Moreover, antimicrobial investigations revealed that cardamom phytochemicals effectively inhibited growth of pathogenic microorganisms (bacteria and fungi), biofilm formation inhibition (Gram-negative and Gram-positive bacteria) and bacterial quorum sensing inhibition. Encapsulation and delivery vehicles, including microcapsules, nanoparticles, nanostructured lipid carriers, and nanoliposomes were effective strategies to enhance their stability, bioavailability and bioefficacy. In conclusion, cardamom phytochemicals had promising therapeutic potentials (antioxidant and antimicrobial) due to polyphenols, thus could be used as functional additive to increase shelf life, inhibit oxidative rancidity and confer pleasant aroma to commercial edibles as well as mitigate oxidative stress and lifestyle related chronic diseases (e.g., cardiovascular and gastrointestinal diseases). A future perspective concerning the fabrication of functional foods, nutraceuticals and antibiotics to promote cardamom phytochemicals applications as biotherapeutic agents at large-scale requires thorough investigations, e.g., optimum dose and physical form of supplementation to obtain maximum health benefits.
Collapse
|
6
|
Truong TH, Alcantara KP, Bulatao BPI, Sorasitthiyanukarn FN, Muangnoi C, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Chitosan-coated nanostructured lipid carriers for transdermal delivery of tetrahydrocurcumin for breast cancer therapy. Carbohydr Polym 2022; 288:119401. [PMID: 35450653 DOI: 10.1016/j.carbpol.2022.119401] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 01/05/2023]
Abstract
Chitosan (Ch)-coated nanostructured lipid carriers (NLCs) have great potential for transdermal delivery with high localization of chemotherapeutics in breast cancer. This study used tetrahydrocurcumin (THC), a primary metabolite of curcumin with enhanced antioxidant and anticancer properties, as a model compound to prepare NLCs. Response surface methodology was employed to optimize THC-loaded Ch-coated NLCs (THC-Ch-NLCs) fabricated by high-shear homogenization. The optimized THC-Ch-NLCs had particle size of 244 ± 18 nm, zeta potential of -17.5 ± 0.5 mV, entrapment efficiency of 76.6 ± 0.2% and drug loading of 0.28 ± 0.01%. In vitro release study of THC-Ch-NLCs showed sustained release following the Korsmeyer-Peppas model with Fickian and non-Fickian diffusion at pH 7.4 and 5.5, respectively. THC-Ch-NLCs demonstrated significantly enhanced in vitro skin permeation, cell uptake, and remarkable cytotoxicity toward MD-MBA-231 breast cancer cells compared to the unencapsulated THC, suggesting Ch-NLCs as potential transdermal nanocarriers of THC for triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Thien Hoang Truong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bryan Paul I Bulatao
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Feuangthit Niyamissara Sorasitthiyanukarn
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Abstract
Cardamom essential oil (EO) is a rare oil of high scientific and economic interest due to its biofunctionality. This work aims to stabilize the EO by Pickering emulsions with nanocellulose, in the form of nanocrystals (CNC) or nanofibers (CNF), and to investigate the stability and chemical and physical interactions involved in the process. The emulsions were characterized by droplet size, morphology, stability, surface charges, Fourier transform infrared spectroscopy, FT-Raman, nuclear magnetic resonance, and scanning electron microscopy. Stable emulsions were prepared with cellulose morphologies and CNCs resulted in a 34% creaming index, while CNFs do not show instability. Emulsions indicate a possible interaction between nanocellulose, α-terpinyl acetate, and 1,8-cineole active essential oil compounds, where α-terpinyl acetate would be inside the drop and 1,8-cineole is more available to interact with cellulose. The interaction intensity depended on the morphology, which might be due to the nanocellulose’s self-assembly around oil droplets and influence on oil availability and future application. This work provides a systematic picture of cardamomum derived essential oil Pickering emulsion containing nanocellulose stabilizers’ formation and stability, which can further be extended to other value-added oils and can be an alternative for the delivery of cardamom essential oil for biomedical, food, cosmetics, and other industries.
Collapse
|
8
|
Juraij K, Chingakham C, Manaf O, Sagitha P, Suni V, Sajith V, Sujith A. Polyurethane/multi‐walled carbon nanotube electrospun composite membrane for oil/water separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kandiyil Juraij
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Chinglenthoiba Chingakham
- School of Materials Science and Engineering National Institute of Technology Calicut Kozhikode India
- Department of Chemistry National University of Singapore Singapore Singapore
| | - Olongal Manaf
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Paroly Sagitha
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Vasudevan Suni
- Inorganic and Bio‐inorganic Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| | - Vandana Sajith
- School of Materials Science and Engineering National Institute of Technology Calicut Kozhikode India
| | - Athiyanathil Sujith
- Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode India
| |
Collapse
|
9
|
Li M, Shan J, Hu Y, Gao C, Long H, Shen T, Tan Z, Zhuang W, Liu D, Zhu C, Ying H. Lignin demethylation for modifying halloysite nanotubes towards robust phenolic foams with excellent thermal insulation and flame retardancy. J Appl Polym Sci 2021. [DOI: 10.1002/app.52019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Ming Li
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Junqiang Shan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Youqin Hu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Cheng Gao
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Haoyu Long
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Tao Shen
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Zhuotao Tan
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Dong Liu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
10
|
Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127529] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Cimino C, Maurel OM, Musumeci T, Bonaccorso A, Drago F, Souto EMB, Pignatello R, Carbone C. Essential Oils: Pharmaceutical Applications and Encapsulation Strategies into Lipid-Based Delivery Systems. Pharmaceutics 2021; 13:pharmaceutics13030327. [PMID: 33802570 PMCID: PMC8001530 DOI: 10.3390/pharmaceutics13030327] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Essential oils are being studied for more than 60 years, but a growing interest has emerged in the recent decades due to a desire for a rediscovery of natural remedies. Essential oils are known for millennia and, already in prehistoric times, they were used for medicinal and ritual purposes due to their therapeutic properties. Using a variety of methods refined over the centuries, essential oils are extracted from plant raw materials: the choice of the extraction method is decisive, since it determines the type, quantity, and stereochemical structure of the essential oil molecules. To these components belong all properties that make essential oils so interesting for pharmaceutical uses; the most investigated ones are antioxidant, anti-inflammatory, antimicrobial, wound-healing, and anxiolytic activities. However, the main limitations to their use are their hydrophobicity, instability, high volatility, and risk of toxicity. A successful strategy to overcome these limitations is the encapsulation within delivery systems, which enable the increase of essential oils bioavailability and improve their chemical stability, while reducing their volatility and toxicity. Among all the suitable platforms, our review focused on the lipid-based ones, in particular micro- and nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Oriana Maria Maurel
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (O.M.M.); (F.D.)
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (O.M.M.); (F.D.)
| | - Eliana Maria Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.C.); (T.M.); (A.B.); (R.P.)
- Correspondence:
| |
Collapse
|
12
|
Shaaban M, Nasr M, Tawfik AA, Fadel M, Sammour O. Bergamot oil as an integral component of nanostructured lipid carriers and a photosensitizer for photodynamic treatment of vitiligo: Characterization and clinical experimentation. Expert Opin Drug Deliv 2020; 18:139-150. [PMID: 33119413 DOI: 10.1080/17425247.2021.1844180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: Bergamot oil (BO) is a photosensitizer that can be used for photodynamic therapy (PDT) of dermatological diseases such as vitiligo. Being an oil, it can be integrated within the lipidic matrix of nanostructured lipid carriers (NLCs) as the liquid lipid constituent, hence exhibiting a dual role. Research design and methods: NLCs were prepared with different emulsifiers and coemulsifiers, and the effect of the preparation method and formulation variables on the NLCs' size was elucidated. The prepared NLCs were further characterized for their in vitro release, viscosity, thermal behavior, and in vitro photostability. Furthermore, a preclinical photodynamic study on animal skin was conducted, followed by clinical experimentation on patients with vitiligo. Results: Results showed that BO was successfully incorporated within the NLCs. The selected NLCs formulation was in the nanometer range with a gel consistency, and it provided sustained release of BO for 24 h. NLCs improved the photostability and photodynamic properties of BO, and displayed promising preclinical and clinical results for the topical PDT of vitiligo. Expert Opinion: BO containing NLCs was proven to be promising means for PDT of vitiligo, and can be further explored in other dermatological diseases.
Collapse
Affiliation(s)
- Mai Shaaban
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University , Cairo, Egypt
| | - Maha Nasr
- Dermatology and Laser Dermatology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University , Cairo, Egypt
| | - Abeer A Tawfik
- Dermatology and Laser Dermatology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University , Cairo, Egypt
| | - Maha Fadel
- Pharmaceutical Technology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University , Cairo, Egypt
| | - Omaima Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University , Cairo, Egypt
| |
Collapse
|
13
|
Carbone C, Caddeo C, Grimaudo MA, Manno DE, Serra A, Musumeci T. Ferulic Acid-NLC with Lavandula Essential Oil: A Possible Strategy for Wound-Healing? NANOMATERIALS 2020; 10:nano10050898. [PMID: 32397093 PMCID: PMC7279150 DOI: 10.3390/nano10050898] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 11/16/2022]
Abstract
Nowadays, an increasing interest in combinatorial drug delivery systems is emerging, highlighting the possibility of exploiting essential oils (EO) for topical applications. This work aimed at developing nanostructured lipid carriers (NLC) for the combined delivery of ferulic acid and Lavandula EO, whose beneficial effects in wound-healing processes have been widely reported. Homogeneous (polydispersity index, PDI < 0.2) nanoparticles with a small size (<150 nm) and a high encapsulation efficiency (>85%) were obtained. The co-presence of ferulic acid and Lavandula EO, as compared to synthetic isopropyl myristate-based NLC, increased nanoparticles’ stability, due to higher ordering chains, as confirmed by morphological and physicochemical studies. An enhanced cytocompatibility was observed when combining ferulic acid and Lavandula EO, as confirmed by in vitro studies on fibroblasts. Furthermore, the combined delivery of ferulic acid and Lavandula EO significantly promoted cell migration with higher effectiveness in respect to the free drug solution and the carrier without the EO. Taken all together, our results suggest a potential combined effect of the antioxidant ferulic acid and Lavandula EO co-delivered in lipid nanoparticles in promoting cell proliferation and migration, representing a promising strategy in the treatment of wounds.
Collapse
Affiliation(s)
- Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: ; Tel.: +39-095-7384251
| | - Carla Caddeo
- Department of Scienze della Vita e dell’Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy;
| | - Maria Aurora Grimaudo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Daniela Erminia Manno
- Dipartimento di Matematica e Fisica, University of Salento, 73100 Lecce, Italy; (D.E.M.); (A.S.)
| | - Antonio Serra
- Dipartimento di Matematica e Fisica, University of Salento, 73100 Lecce, Italy; (D.E.M.); (A.S.)
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, viale A. Doria 6, 95125 Catania, Italy;
| |
Collapse
|