1
|
Thamarai P, Deivayanai VC, Swaminaathan P, Karishma S, A S, Vickram AS, Yaashikaa PR. Experimental investigation of Cd (II) ion adsorption on surface-modified mixed seaweed Biosorbent: A study on analytical interpretation and thermodynamics. ENVIRONMENTAL RESEARCH 2024; 260:119670. [PMID: 39048063 DOI: 10.1016/j.envres.2024.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Despite advancements in wastewater treatment technologies, heavy metal contamination, especially cadmium (Cd), severely threatens human health and ecosystems. The purpose of this work is to compare the removal of Cd (II) ions from aqueous solutions by chemically modified mixed seaweed biosorbent (CMSB) and physically modified mixed seaweed biosorbent (PMSB). BET, SEM, EDAX, FTIR, and XRD techniques characterized the mixed seaweed biosorbents before and after adsorption. They are well-known for their sustainability, affordability, and biodegradability. The BET study revealed that CMSB had a surface area of 19.682 m2/g, while PMSB had a lower surface area of 14.803 m2/g. The optimum adsorption conditions were a temperature of 303 K, pH of 6.0, and biosorbent dosages of 1 g/L for CMSB and 2.5 g/L for PMSB. For CMSB and PMSB, the most efficient contact times were 40 and 80 min, respectively. The Langmuir model was demonstrated to be the best fit for the experimental data when compared to other isotherm models, with a coefficient of determination, or R2, of 0.9713 and a maximum monolayer capacity of 151.2 mg/g and 181.6 mg/g for physical and chemical activated mixed seaweed biomass. There was a significant relationship between the R2 values of chemically modified and physically modified biomass. The findings demonstrate that pseudo-second-order kinetics more accurately represent the adsorption process than pseudo-first-order and Elovich models. Thermodynamic experiments validated the endothermic, spontaneous and favourable characteristics of the removal process. According to the results of the current study, PMSB and CMSB may be used as effective adsorbents to remove Cd (II) from aqueous solutions.
Collapse
Affiliation(s)
- P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Pavithra Swaminaathan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
2
|
Alabi AH, Lawanson SE, Oladoye PO, Bello NY. Methylene blue and Congo red dye elimination from synthetic wastewater using Albizia lebbeck seed pod powder: isotherm and kinetic and mechanistic studies. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2366-2377. [PMID: 39140636 DOI: 10.1080/15226514.2024.2390190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This research examined the effectiveness of using Albizia lebbeck seed pods (ALB) as an adsorbent to remove dye effluents and clean up wastewater. More specifically, the binding capacity of methylene blue (MB) and Congo red (CR) dyes from aqueous solution using unmodified Albizia lebbeck seed pods (UALB) and citric acid modified Albizia lebbeck seed pods (CALB) were compared. The adsorbents underwent characterization via the use of Fourier transform infrared spectroscopy and scanning electron microscopy. Several operational factors were investigated using batch tests to ascertain their effects. These parameters included pH, adsorbent dose, interaction duration, and initial dye concentration. The residual dye concentrations were determined, and the data generated were fitted to equilibrium and kinetic models. In CALB and UALB, MB adsorption ideal pH values were 10 and 12, whereas CR optimal pH values were 3 and 2. Also, MB and CR equilibrium durations were 360 and 240 min, respectively. Temkin model best described the adsorption in CALB (r 2 = 0.9916, 0.9484) whereas Freundlich worked well for UALB in MB and CR (r 2 = 0.9626, 0.9871). Kinetic modeling of the adsorption data showed that the pseudo-second-order kinetic model provided the best fit (r 2 = 0.9998, 0.9999) for CALB and (r 2 = 1, 0.9992) for UALB for both MB and CR dyes. Maximum adsorption for MB was 9.499 mg/g and for CR it was 8.628 mg/g, and the findings showed a positive linear correlation between the concentration of dye-ions and their adsorption ability. The CALB also demonstrated superior efficacy in the removal of MB (4.661 mg/g) dye relative to CR (4.113 mg/g). The results of this study demonstrate that the use of ALB, in both modified and unmodified forms, is a cost-effective and efficient approach for the removal of MB and CR from the aqueous environment.
Collapse
Affiliation(s)
| | | | - Peter Olusakin Oladoye
- Department of Chemistry, University of Ibadan, Ibadan, Nigeria
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | | |
Collapse
|
3
|
Laktif T, Lakhmiri R, Albourine A. Salsola Tetragona as a new low-cost adsorbent for water treatment: highly effective adsorption of crystal violet. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1691-1700. [PMID: 38725313 DOI: 10.1080/15226514.2024.2349703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Synthetic dyes are prevalent in aquatic environments, they have high toxicities, are non-degradable, and accumulate in the water. The removal of Crystal violet (CV) is carried out using batch experiments on the Salsola Tetragona (ST) plant as a novel adsorbent. The prepared adsorbent was analyzed by various methods (MEB, EDX, IRTF and PZC), to support its applicability as adsorbent. The adsorption study of CV is performed by optimizing the parameters affecting the adsorption process. The adsorption kinetics study is represented by pseudo-second-order (R2 = 0.999) and the adsorption process is limited by external mass transport. In addition, the isotherm results demonstrate that the Langmuir model interprets better the adsorption isotherm. The thermodynamic parameters suggest that the adsorption phenomena are spontaneous and exothermic. Furthermore, the adsorption reactions involved are of physisorption type, which facilitates the desorption of pollutants from the surface of the adsorbent. The results show that ST adsorbent effectively removes CV in an aqueous solution, which is demonstrated by the maximum amount adsorption of 246.7 mg.g-1 at optimum adsorption conditions: pH = 6, adsorbent dose of 0.5 g.L-1, initial CV concentration of 10 mg.L-1, and adsorption time of 30 min at 298 K. Finally, these results can be considered as a useful reference for wastewater treatment using ST.
Collapse
Affiliation(s)
- Toufa Laktif
- Department of Chemistry, University Ibn Zohr, Agadir, Morocco
| | - Rajae Lakhmiri
- Laboratory of Chemical Engineering and Valorization of Resources, Abdelmalek Essaadi University, Tangier, Morocco
| | - Abdallah Albourine
- Department of Chemistry, University Ibn Zohr, Agadir, Morocco
- Laboratory of Industrial Engineering, Energy and Environment (LI3E), Rabat, Morocco
| |
Collapse
|
4
|
Hsu CY, Ali E, Al-Saedi HFS, Mohammed AQ, Mustafa NK, Talib MB, Radi UK, Ramadan MF, Ami AA, Al-Shuwaili SJ, Alawadi A, Alsalamy A, Baharinikoo L. A chemometric approach based on response surface methodology for optimization of antibiotic and organic dyes removal from water samples. BMC Chem 2024; 18:5. [PMID: 38172983 PMCID: PMC10765863 DOI: 10.1186/s13065-023-01107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, the Fe3O4/rGO/Ag magnetic nanocomposite was synthesized and employed as an adsorbent for the removal of tetracycline (TC), crystal violet (CV), and methylene blue (MB) from water samples. The influential parameters in the removal process were identified and optimized using response surface methodology (RSM). Characterization of the product was performed through field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), vibrating-sample magnetometer (VSM), and X-ray diffraction (XRD) analysis. XRD and SEM analysis revealed the successful synthesis of the Fe3O4/rGO/Ag nanocomposite. EDX analysis elucidated the accuracy and clarity of the chemical composition of the magnetic nanocomposite structure. Additionally, the separation of the nano-adsorbent from the solution can be achieved using a magnetic field. Maximum removal of analytes was obtained at pH of 6, amount of nanocomposite 0.014 g, ultrasonic time of 8 min and concentration of 21 mg L-1. Under optimal conditions, the removal efficiencies for TC, CV, and MB were 91.33, 95.82, and 98.19%, respectively. Also, it was observed that after each adsorption-desorption cycle, Fe3O4/rGO/Ag magnetic nanocomposite had good stability to remove TC, CV, and MB. Achieving nearly 98% removal efficiency in optimal conditions showed that Fe3O4/rGO/Ag magnetic nanocomposite is an effective adsorbent for removing TC, CV, and MB from wastewater samples.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | | | | | | | - Maysm Barzan Talib
- Department of Medical Laboratories Technology, Mazaya University College, Samawah, Iraq
| | - Usama Kadem Radi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Ahmed Ali Ami
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Saeb Jasim Al-Shuwaili
- Department of Medical Laboratories Technology, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University of Najaf, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Samawah, Al-Muthanna, 66002, Iraq
| | - Leila Baharinikoo
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
5
|
Saravanan A, Karishma S, Kumar PS, Thamarai P, Yaashikaa PR. Recent insights into mechanism of modified bio-adsorbents for the remediation of environmental pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122720. [PMID: 37839681 DOI: 10.1016/j.envpol.2023.122720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Rapid industrialization has exacerbated the hazard to health and the environment. Wide spectrums of contaminants pose numerous risks, necessitating their disposal and treatment. There is a need for further remediation methods since pollutant residues cannot be entirely eradicated by traditional treatment techniques. Bio-adsorbents are gaining popularity due to their eco-friendly approach, broad applicability, and improved functional and surface characteristics. Adsorbents that have been modified have improved qualities that aid in their adsorptive nature. Adsorption, ion exchange, chelation, surface precipitation, microbial uptake, physical entrapment, biodegradation, redox reactions, and electrostatic interactions are some of the processes that participate in the removal mechanism of biosorbents. These processes can vary depending on the particular biosorbent and the type of pollutants being targeted. The systematic review focuses on the many modification approaches used to remove environmental contaminants. Different modification or activation strategies can be used depending on the type of bio-adsorbent and pollutant to be remediated. Physical activation procedures such as ultrasonication and pyrolysis are more commonly used to modify bio-adsorbents. Ultrasonication process improves the adsorption efficiency by 15-25%. Acid and alkali modified procedures are the most effective chemical activation strategies for adsorbent modification for pollution removal. Chemical modification increases the removal to around 95-99%. The biological technique involving microbial culture is an emerging field that needs to be investigated further for pollutant removal. A short evaluation of modified adsorbents with multi-pollutant adsorption capability that have been better eliminated throughout the adsorption process has been provided.
Collapse
Affiliation(s)
- A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
6
|
Hayat A, Sohail M, Moussa SB, Al-Muhanna MK, Iqbal W, Ajmal Z, Raza S, Al-Hadeethi Y, Orooji Y. State, synthesis, perspective applications, and challenges of Graphdiyne and its analogues: A review of recent research. Adv Colloid Interface Sci 2023; 319:102969. [PMID: 37598456 DOI: 10.1016/j.cis.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/05/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Carbon materials technology provides the possibility of synthesizing low-cost, outstanding performance replacements to noble-metal catalysts for long-term use. Graphdiyne (GDY) is a carbon allotrope with an extremely thin atomic thickness. It consists of carbon elements, that are hybridized with both sp. and sp2, resulting in a multilayered two-dimensional (2D) configuration. Several functional models suggest, that GDY contains spontaneously existing band structure with Dirac poles. This is due to the non-uniform interaction among carbon atoms, which results from various fusions and overlapping of the 2pz subshell. Unlike other carbon allotropes, GDY has Dirac cone arrangements, that in turn give it inimitable physiochemical characteristics. These properties include an adjustable intrinsic energy gap, high speeds charging transport modulation efficiency, and exceptional conductance. Many scientists are interested in such novel, linear, stacked materials, including GDY. As a result, organized synthesis of GDY has been pursued, making it one of the first synthesized GDY materials. There are several methods to manipulate the band structure of GDY, including applying stresses, introducing boron/nitrogen loading, utilizing nanowires, and hydrogenations. The flexibility of GDY can be effectively demonstrated through the formation of nano walls, nanostructures, nanotube patterns, nanorods, or structured striped clusters. GDY, being a carbon material, has a wide range of applications owing to its remarkable structural and electrical characteristics. According to subsequent research, the GDY can be utilized in numerous energy generation processes, such as electrochemical water splitting (ECWS), photoelectrochemical water splitting (PEC WS), nitrogen reduction reaction (NRR), overall water splitting (OWS), oxygen reduction reaction (ORR), energy storage materials, lithium-Ion batteries (LiBs) and solar cell applications. These studies suggested that the use of GDY holds significant potential for the development and implementation of efficient, multimodal, and intelligent catalysts with realistic applications. However, the limitation of GDY and GDY-based composites for forthcoming studies are similarly acknowledged. The objective of these studies is to deliver a comprehensive knowledge of GDY and inspire further advancement and utilization of these unique carbon materials.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Sana Ben Moussa
- Faculty of Science and Arts, Mohail Asser, King Khalid University, Saudi Arabia
| | - Muhanna K Al-Muhanna
- The Material Science Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Waseem Iqbal
- Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, Rende 87036, Italy
| | - Zeeshan Ajmal
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Saleem Raza
- College of Chemistry and Material Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China; College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Kumari S, Verma A, Sharma P, Agarwal S, Rajput VD, Minkina T, Rajput P, Singh SP, Garg MC. Introducing machine learning model to response surface methodology for biosorption of methylene blue dye using Triticum aestivum biomass. Sci Rep 2023; 13:8574. [PMID: 37237060 DOI: 10.1038/s41598-023-35645-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
A major environmental problem on a global scale is the contamination of water by dyes, particularly from industrial effluents. Consequently, wastewater treatment from various industrial wastes is crucial to restoring environmental quality. Dye is an important class of organic pollutants that are considered harmful to both people and aquatic habitats. The textile industry has become more interested in agricultural-based adsorbents, particularly in adsorption. The biosorption of Methylene blue (MB) dye from aqueous solutions by the wheat straw (T. aestivum) biomass was evaluated in this study. The biosorption process parameters were optimized using the response surface methodology (RSM) approach with a face-centred central composite design (FCCCD). Using a 10 mg/L concentration MB dye, 1.5 mg of biomass, an initial pH of 6, and a contact time of 60 min at 25 °C, the maximum MB dye removal percentages (96%) were obtained. Artificial neural network (ANN) modelling techniques are also employed to stimulate and validate the process, and their efficacy and ability to predict the reaction (removal efficiency) were assessed. The existence of functional groups, which are important binding sites involved in the process of MB biosorption, was demonstrated using Fourier Transform Infrared Spectroscopy (FTIR) spectra. Moreover, a scan electron microscope (SEM) revealed that fresh, shiny particles had been absorbed on the surface of the T. aestivum following the biosorption procedure. The bio-removal of MB from wastewater effluents has been demonstrated to be possible using T. aestivum biomass as a biosorbent. It is also a promising biosorbent that is economical, environmentally friendly, biodegradable, and cost-effective.
Collapse
Affiliation(s)
- Sheetal Kumari
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Anoop Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, India
| | - Pinki Sharma
- Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Smriti Agarwal
- Department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Surendra Pal Singh
- Surveying Engineering Department, Wollega University, Nekemte City, Ethiopia.
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India.
| |
Collapse
|
8
|
Golubeva A, Roychoudhury P, Dąbek P, Pryshchepa O, Pomastowski P, Pałczyńska J, Piszczek P, Gloc M, Dobrucka R, Feliczak-Guzik A, Nowak I, Buszewski B, Witkowski A. Removal of the Basic and Diazo Dyes from Aqueous Solution by the Frustules of Halamphora cf. salinicola (Bacillariophyta). Mar Drugs 2023; 21:md21050312. [PMID: 37233506 DOI: 10.3390/md21050312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Industrial wastes with hazardous dyes serve as a major source of water pollution, which is considered to have an enormous impact on public health. In this study, an eco-friendly adsorbent, the porous siliceous frustules extracted from the diatom species Halamphora cf. salinicola, grown under laboratory conditions, has been identified. The porous architecture and negative surface charge under a pH of 7, provided by the various functional groups via Si-O, N-H, and O-H on these surfaces, revealed by SEM, the N2 adsorption/desorption isotherm, Zeta-potential measurement, and ATR-FTIR, respectively, made the frustules an efficient mean of removal of the diazo and basic dyes from the aqueous solutions, 74.9%, 94.02%, and 99.81% against Congo Red (CR), Crystal Violet (CV), and Malachite Green (MG), respectively. The maximum adsorption capacities were calculated from isotherms, as follows: 13.04 mg g-1, 41.97 mg g-1, and 33.19 mg g-1 against CR, CV, and MG, respectively. Kinetic and isotherm models showed a higher correlation to Pore diffusion and Sips models for CR, and Pseudo-Second Order and Freundlich models for CV and MG. Therefore, the cleaned frustules of the thermal spring-originated diatom strain Halamphora cf. salinicola could be used as a novel adsorbent of a biological origin against anionic and basic dyes.
Collapse
Affiliation(s)
- Aleksandra Golubeva
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Piya Roychoudhury
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| | - Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Jagoda Pałczyńska
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznan, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalysis, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Toruń, Poland
- Prof. Jan Czochralski Kuyavian-Pomeranian Research & Development Centre, Krasińskiego 4, 87-100 Toruń, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
| |
Collapse
|
9
|
Mehmandost N, Goudarzi N, Arab Chamjangali M, Bagherian G. Application of chemometrics tools for removal of crystal violet and methylene blue in binary solution by eco-friendly magnetic adsorbent modified on Heracleum persicum waste. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122415. [PMID: 36758320 DOI: 10.1016/j.saa.2023.122415] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Synthetic dyes can be hazardous to the ecosystem, even at low concentrations in the effluent. In this research, the Heracleum persicum stems-Fe3O4 (MHPS) adsorbent performance for the removal of crystal violet (CV) and methylene blue (MB) from binary aqueous solutions was investigated in a batch method under the influence of different parameters. In addition, predictive models for the adsorption process were developed using machine learning techniques such as artificial neural networks and random forests. ANN and RF models achieved high R2 values of 0.9501 and 0.9797 for CV, 0.9471, and 09,834 for MB, respectively, and obtained low MSE values of 0.07107 and 0.03405 for CV, 0.09933, and 0.02908 for MB. The proposed adsorbent is cheap and eco-friendly and, on the other hand, is easily collected by the magnetic field. The adsorbent was characterized by applying FESEM-EDX, FESEM, BET, and FTIR. Various isotherm and kinetics models for the simultaneous adsorption of CV and MB were investigated in aqueous solutions. The adsorption isotherm and kinetics studies explain that the extended Langmuir model and pseudo-second-order models are best suited for CV and MB in the binary solution. The exothermic adsorption was achieved in the temperature range of 5-45 °C.
Collapse
Affiliation(s)
- Nasrin Mehmandost
- Faculty of Chemistry, Shahrood University of Technology, P.O. Box 316, Shahrood, Iran
| | - Nasser Goudarzi
- Faculty of Chemistry, Shahrood University of Technology, P.O. Box 316, Shahrood, Iran.
| | | | - Ghadamali Bagherian
- Faculty of Chemistry, Shahrood University of Technology, P.O. Box 316, Shahrood, Iran
| |
Collapse
|
10
|
Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Dried Leaves Powder of Adiantum capillus-veneris as an Efficient Biosorbent for Hazardous Crystal Violet Dye from Water Resources. SEPARATIONS 2023. [DOI: 10.3390/separations10030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
The dyeing industry uses many chemicals and dyes. After the dying process is completed, they release a significant amount of dyes in wastewater. The dyes’ color emissions are extremely poisonous and dangerous for aquatic and terrestrial life. Due to the toxic nature of dyes, the current study was carried out to evaluate whether it would be effective to employ an adsorption procedure with leaves from the Adiantum capillus-veneris plant as an adsorbent to remove commonly used textile dyes from an aqueous dye solution and wastewater. The effect of pH, concentration, time and the adsorbent dose on the adsorption process was studied in order to determine the maximum adsorption under ideal conditions. The selected pH was 3; the optimum concentration was 30 ppm with a contact time of 90 min and the optimized adsorbent dose was 60 mg. The absorbent under study showed excellent results when compared with commercial adsorbents i.e., animal charcoal and silica gel. The leaves of the Adiantum capillus-veneris plant revealed a maximum removal of 90.36 percent crystal violet dye (adsorption capacity (Qe) 9.05 mg/g) without any treatment to activate or alter the surface chemistry of the biosorbent. Its effectiveness was also tested with water gathered from several sources, including canal water, tap water, distilled water, and saline water, to determine whether it was practical. In both the canal and the tap water, the adsorbent displayed good removal efficiency. From the results of the current study, it can be inferred that the leaves of the Adiantum capillus-veneris plant are a reasonably priced biosorbent that can be used to remove toxic dyes from wastewater to protect water bodies from toxic pollution and can be used to treat industrial wastewater directly.
Collapse
|
12
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
13
|
Essekri A, Laabd M, Fatni A, Addi AA, Lakhmiri R, Albourine A. The use of raw and modified acacia leaves for adsorptive removal of crystal violet from water. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Nguyen TTT, Hoang DQ, Nguyen DTC, Tran TV. Adsorptive Optimization of Crystal Violet Dye Using Central Composite Rotatable Design and Response Surface Methodology: Statistical Analysis, Kinetic and Isotherm Studies. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 48:1-14. [PMID: 36415668 PMCID: PMC9668708 DOI: 10.1007/s13369-022-07391-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/16/2022] [Indexed: 11/18/2022]
Abstract
Water contamination is emerging as the most critical global issues in the world, calling for the treatment eco-techniques. Taking advantage of biowastes as adsorbent materials is not only in accordance with the purpose of environmental protection but also enhance the higher value-added products. In this work, water hyacinth (Eichhornia crassipes) powder was used as an efficient adsorbent for the removal of crystal violet from aqueous solutions. The structure of water hyacinth powder adsorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy analysis. Based on the central composite rotatable design and response surface methodology, the effect of different parameters such as initial pH solution, contact time, adsorbent dosage, and initial crystal violet concentration was optimized. The maximum adsorption capacity of 180.336 mg/g was achieved under the optimum condition as initial pH solution of 6.246, contact time of 125.698 min, the adsorbent dosage of 1.382 g/L, and initial dye concentration of 615.865 mg/L. Moreover, the Langmuir isotherm provided the best fit with a high correlation coefficient of 0.9981 and a maximum monolayer adsorption capacity of 181.818 mg/g at 30 °C. The kinetic studies indicated that the pseudo-second-order model was adequately applied for the adsorption kinetic of crystal violet on the water hyacinth powder adsorbent. The utilization of the water hyacinth plant, an abundant species, as a low-cost biosorbent to remove crystal violet using the central composite rotatable design combined with response surface methodology approach is recommended for the real treatment of organic dyes.
Collapse
Affiliation(s)
| | - Dong Quy Hoang
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, 700000 Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| |
Collapse
|
15
|
Shah SS, Sharma T, Kumar D, Sharma S, Bamezai RK. Ionic liquid treated leaves of Juglans regia as an adsorbent for the removal of methyl orange dye: experimental, computational, and statistical approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:765-780. [PMID: 35939852 DOI: 10.1080/15226514.2022.2106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The novel biosorbents prepared by surface modification from leaves of Juglans regia plant were exploited for removal of methyl orange dye from aqueous solution. The leaves in the form of dust and charcoal were separately impregnated with 1-butyl-3-methyl imidazolium bromide (I) to obtain adsorbents namely J. regia dust/charcoal impregnated with I (JRDI/JRCI) which were characterized using advanced analytical approaches. The impregnation of ionic liquid was confirmed by the appearance of new bands. Langmuir isotherm fitted well; the calculated adsorption capacity being 59.37 (JRDI) and 102.72 mg g-1 (JRCI). The kinetic study revealed that sorption obeyed the pseudo-first order model; the experimental adsorption capacity being 53.53 (JRDI) and 86.82 mg g-1 (JRCI) at selected conditions of pH 3, initial dye concentration 100 ppm, dosage of adsorbent 0.3 g and contact time 70 min. The mathematical models which predicted adsorption capacity as 51.5 (JRDI) and 82.1 mg g-1 (JRCI) were found at par with experimental values. Fukui condensed functions revealed that adsorbents had electron deficient electrophilic reaction sites while dye had electron-rich nucleophilic reaction sites. The structural properties and good adsorption capability of adsorbents indicate that they could be used as potential, eco-friendly adsorbents for the treatment of negatively charged dye pollutants.
Collapse
Affiliation(s)
| | - Taniya Sharma
- Department of Chemistry, University of Jammu, Jammu, India
| | - Dinesh Kumar
- Department of Chemistry, University of Jammu, Jammu, India
| | - Sapna Sharma
- Department of Chemistry, Government Degree College, Paloura, Jammu, India
| | | |
Collapse
|
16
|
Ali H, Ahmed S, Hsini A, Kizito S, Naciri Y, Djellabi R, Abid M, Raza W, Hassan N, Rehman M, Jamal Khan A, Khan M, Zia Ul Haq M, Aboagye D, Irshad M, Hassan M, Hayat A, Wu B, Qadeer A, Ajmal Z. Adsorption/desorption characteristics of novel Fe3O4 impregnated N-doped biochar (Fe3O4@N/BC) for arsenic (III and V) removal from aqueous solution: Insight into mechanistic understanding and reusability potential. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
17
|
Sohail M, Anwar U, Taha T, I. A. Qazi H, Al-Sehemi AG, Ullah S, Gharni H, Ahmed I, Amin MA, Palamanit A, Iqbal W, Alharthi S, Nawawi W, Ajmal Z, Ali H, Hayat A. Nanostructured Materials Based on g-C3N4 for Enhanced Photocatalytic Activity and Potentials Application: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
18
|
Adsorptive Removal of Malachite Green from Water Using Ethylenediamine Fabricated Ni–Cr Bimetallic Composite. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02270-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
19
|
Isothermal and Kinetic Investigation of Exploring the Potential of Citric Acid-Treated Trapa natans and Citrullus lanatus Peels for Biosorptive Removal of Brilliant Green Dye from Water. J CHEM-NY 2021. [DOI: 10.1155/2021/6051116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Trapa natans peels (TNPs) and Citrullus lanatus peels (CLPs) were utilized for the biosorptive removal of brilliant green dye (BGD), after modifying with citric acid. Characterization and surface morphology were studied by Fourier transform infrared spectroscopy and scanning electron microscopy. For the removal of BGD by citric acid-treated Trapa natans peels (CA-TNPs), the optimum conditions were obtained with adsorbent dose 0.8 g, contact time 25 minutes, initial pH 5, temperature 30°C, and agitation speed 100 rpm, while for the citric acid-treated Citrullus lanatus peels (CA-CLPs), adsorbent dose 0.8 g, contact time 20 minutes, pH 5, temperature 30°C, and agitation speed 100 rpm gave optimum results. The qmax values obtained were 108.6, 128, 144.9, and 188.68 mg/g for R-TNP, CA-TNP, R-CLP, and CA-CLP, respectively, while the correlation coefficient (R2) values obtained were 0.985, 0.986, 0.985, and 0.998 for R-TNP, CA-TNP, R-CLP, and CA-CLP, respectively. These favor the Langmuir isotherm and pseudo-second-order kinetics, with negative (ΔG0) values of all adsorbents, determining that the adsorption phenomenon is exothermic and spontaneous in nature. Both citric acid-treated peels of Trapa natans and Citrullus lanatus were found suitable for bulk-scale eradication of hazardous, toxic, and carcinogenic basic cationic dyes.
Collapse
|
20
|
Hsini A, Naciri Y, Bouziani A, Aarab N, Essekri A, Imgharn A, Laabd M, Navío JA, Puga F, Lakhmiri R, Albourine A. Polyaniline coated tungsten trioxide as an effective adsorbent for the removal of orange G dye from aqueous media. RSC Adv 2021; 11:31272-31283. [PMID: 35496861 PMCID: PMC9041320 DOI: 10.1039/d1ra04135e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/13/2021] [Indexed: 11/29/2022] Open
Abstract
In this work, the core–shell PANI@WO3 composite was obtained from the reaction of aniline monomer polymerization with WO3 particles; sodium persulfate was used as an oxidant. Various analytical techniques such as scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), and X-ray photoelectron spectroscopy (XPS) were used to characterize the as-prepared PANI@WO3 adsorbent, which well confirmed that the WO3 particles were coated by polyaniline polymer. The PANI@WO3 composite was tested as an adsorbent to remove reactive orange G (OG) for the first time. pH, adsorbent dose, contact time, initial dye concentration, and temperature were systematically investigated in order to study their effect on the adsorption process. The experimental findings showed that the PANI@WO3 composite has considerable potential to remove an aqueous OG dye. Langmuir and Freundlich's models were used to analyze the equilibrium isotherms of OG dye adsorption on the PANI@WO3 composite. As a result, the best correlation of the experimental data was provided by the Langmuir model, and the maximum capacity of adsorption was 226.50 mg g−1. From a thermodynamic point of view, the OG dye adsorption process occurred spontaneously and endothermically. Importantly, PANI@WO3 still exhibited an excellent adsorption capability after four regeneration cycles, indicating the potential reusability of the PANI@WO3 composite. These results indicate that the as prepared PANI@WO3 composite could be employed as an efficient adsorbent and was much better than the parent material adsorption of OG dye. In this work, the core–shell PANI@WO3 composite was obtained from the reaction of aniline monomer polymerization with WO3 particles; sodium persulfate was used as an oxidant.![]()
Collapse
Affiliation(s)
- Abdelghani Hsini
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University Agadir Morocco
| | - Yassine Naciri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University Agadir Morocco
| | - Asmae Bouziani
- Chemical Engineering Department, Middle East Technical University Ankara Turkey
| | - Nouh Aarab
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University Agadir Morocco
| | - Abdelilah Essekri
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University Agadir Morocco
| | - Abdelaziz Imgharn
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University Agadir Morocco
| | - Mohamed Laabd
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University Agadir Morocco
| | - J A Navío
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC Américo Vespucio 49 41092 Sevilla Spain
| | - F Puga
- Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC Américo Vespucio 49 41092 Sevilla Spain
| | - Rajae Lakhmiri
- Laboratory of Chemical Engineering and Valorization Resources, Faculty of Sciences and Techniques, Abdelmalek Essaadi University Tangier Morocco
| | - Abdallah Albourine
- Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University Agadir Morocco
| |
Collapse
|
21
|
Phycoremediation of Synthetic Dyes: An Effective and Eco-Friendly Algal Technology for the Dye Abatement. J CHEM-NY 2021. [DOI: 10.1155/2021/9923643] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rapid industrialization leads to serious environmental hazards due to the increase in the release of pollutants into the environment. Industries that use synthetic dyes for different applications are a predominant source for dye contaminants by releasing the dye in wastewater with pretreatment or without treatment directly into the water bodies, making serious water pollution in the environment. Therefore, it is imperative to safeguard the environment from such contaminants and their associated negative impacts. The conventional treatment method that is used to treat dye-contaminated wastewater is generally costly and has a possibility to produce secondary metabolites. Due to the above problems, the biological method is preferable to treat effluent or dye-contaminated wastewater. Phycoremediation is an algae-based eco-friendly dye abatement technique from contaminated environments. This review highlights the phycoremediation of dyes and its underlying mechanisms along with the information on synthetic dyes, classification, hazardous effects, and other major techniques of dye abatement. This review provides a comprehensive insight into several influencing factors such as pH, temperature, contact time, the dose of algae biomass, and agitation speed, as well as functional groups involved in the phycoremediation process.
Collapse
|