1
|
Sun Y, He J, Liu D, Peng Y, Li Q, Liu X, Gui Yang H, Niu Q, Yang S, Hou Y. Lead Bromide Complex in Tri-n-Octylphosphine Oxide Matrix with Bright Photoluminance and Exceptional Thermoplasticity. Chemistry 2024; 30:e202401739. [PMID: 38954398 DOI: 10.1002/chem.202401739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Metal halide materials have recently drawn increasing research interest for their excellent opto-electronic properties and structural diversity, but their resulting rigid structures render them brittle and poor formability during manufacturing. Here we demonstrate a thermoplastic luminant hybrid lead halide solid by integrating lead bromide complex into tri-n-octylphosphine oxide (TOPO) matrix. The construction of the hybrid materials can be achieved by a simple dissolution process, in which TOPO molecules act as the solvents and ligands to yield the monodispersed clusters. The combination of these functional units enables the near-room-temperature melt-processing of the materials into targeted geometry by simple molding or printing techniques, which offer possibilities for fluorescent writing inks with outstanding self-healing capacity to physical damage. The intermarriage between metal halide clusters with functional molecules expands the range of practical applications for hybrid metal halide materials.
Collapse
Affiliation(s)
- Yuting Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jingjing He
- National Enterprise Technology Center, Inner Mongolia Erdos Electric Power and Metallurgy Group Company Limited, Ordos, 016064, P. R. China
| | - Da Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Peng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xinyi Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qiang Niu
- National Enterprise Technology Center, Inner Mongolia Erdos Electric Power and Metallurgy Group Company Limited, Ordos, 016064, P. R. China
| | - Shuang Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Hou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
2
|
Lin J, Wang P, Zhou J, Mao L. A Luminescent Hybrid Bimetallic Halide Family with Solvent-Coordinated Rare Earth and Alkaline Earth Metals. Angew Chem Int Ed Engl 2024; 63:e202400554. [PMID: 38708923 DOI: 10.1002/anie.202400554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/07/2024]
Abstract
Hybrid metal halides are an extraordinary class of optoelectronic materials with extensive applications. To further diversify and study the in-depth structure-property relations, we report here a new family of 21 zero-dimensional hybrid bimetallic chlorides with the general formula A(L)n[BClm] (A=rare earth (RE), alkaline earth metals and Mn; L=solvent ligand; and B=Sb, Bi and Te). The RE(DMSO)8[BCl6] (RE=La, Ce, Sm, Eu, Tb, and Dy; DMSO=dimethyl sulfoxide) series shows broadband emission attributed to triplet radiative recombination from Sb and Bi, incorporating the characteristic emission of RE metals, where Eu(DMSO)8[BiCl6] shows a staggering PL quantum yield of 94 %. The pseudo-octahedral [SbCl5] with Cl vacancy in AII(DMSO)6[SbCl5] (AII=Mg, Ca and Mn) and the square pyramidal [SbCl5] in AII(TMSO)6[SbCl5] (TMSO=tetramethylene sulfoxide) enhance the stereoactive expression of the 5 s2 lone pairs of Sb3+, giving rise to the observation of dual-band emission of singlet and triplet emission, respectively. A series of Te(IV) analogues have been characterized, showing blue-light-excitable single-band emission. This work expands the materials space for hybrid bimetallic halides with an emphasis on harnessing the RE elements, and provides important insights into designing new emitters and regulating their properties.
Collapse
Affiliation(s)
- Jiawei Lin
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pan Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jiaqian Zhou
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
3
|
Chen T, Yan D. Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites. Nat Commun 2024; 15:5281. [PMID: 38902239 PMCID: PMC11190143 DOI: 10.1038/s41467-024-49654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Long persistent luminescence (LPL) has gained considerable attention for the applications in decoration, emergency signage, information encryption and biomedicine. However, recently developed LPL materials - encompassing inorganics, organics and inorganic-organic hybrids - often display monochromatic afterglow with limited functionality. Furthermore, triplet exciton-based phosphors are prone to thermal quenching, significantly restricting their high emission efficiency. Here, we show a straightforward wet-chemistry approach for fabricating multimode LPL materials by introducing both anion (Br-) and cation (Sn2+) doping into hexagonal CsCdCl3 all-inorganic perovskites. This process involves establishing new trapping centers from [CdCl6-nBrn]4- and/or [Sn2-nCdnCl9]5- linker units, disrupting the local symmetry in the host framework. These halide perovskites demonstrate afterglow duration time ( > 2,000 s), nearly full-color coverage, high photoluminescence quantum yield ( ~ 84.47%), and the anti-thermal quenching temperature up to 377 K. Particularly, CsCdCl3:x%Br display temperature-dependent LPL and time-valve controllable time-dependent luminescence, while CsCdCl3:x%Sn exhibit forward and reverse excitation-dependent Janus-type luminescence. Combining both experimental and computational studies, this finding not only introduces a local-symmetry breaking strategy for simultaneously enhancing afterglow lifetime and efficiency, but also provides new insights into the multimode LPL materials with dynamic tunability for applications in luminescence, photonics, high-security anti-counterfeiting and information storage.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
4
|
Lin Y, Zhong Y, Lin Y, Lin J, Pang L, Zhang Z, Zhao Y, Huang XY, Du KZ. White light emission in 0D halide perovskite [(CH 3) 3S] 2SnCl 6·H 2O crystals through variation of doping ns 2 ions. FRONTIERS OF OPTOELECTRONICS 2024; 17:6. [PMID: 38374460 PMCID: PMC10876505 DOI: 10.1007/s12200-024-00109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
With the rapid development of white LEDs, the research of new and efficient white light emitting materials has attracted increasing attention. Zero dimensional (0D) organic-inorganic hybrid metal halide perovskites with superior luminescent property are promising candidates for LED application, due to their abundant and tailorable structure. Herein, [(CH3)3S]2SnCl6·H2O is synthesized as a host for dopant ions Bi3+ and Sb3+. The Sb3+ doped, or Bi3+/Sb3+ co-doped, [(CH3)3S]2SnCl6·H2O has a tunable optical emission spectrum by means of varying dopant ratio and excitation wavelength. As a result, we can achieve single-phase materials suitable for emission ranging from cold white light to warm white light. The intrinsic mechanism is examined in this work, to clarify the dopant effect on the optical properties. The high stability of title crystalline material, against water, oxygen and heat, makes it promising for further application.
Collapse
Affiliation(s)
- Yitong Lin
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yu Zhong
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, China.
- Qinghai Environmental Monitoring Center, Xining, 810000, China.
| | - Yangpeng Lin
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, China
| | - Jiawei Lin
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, China
| | - Lei Pang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhilong Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yi Zhao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ke-Zhao Du
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou, 350007, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
Zhong Y, Liu SP, Lin YP, Qi XH, Yang B, Zhang Q, Du KZ. Multi-Mode Photoluminescence Regulation in a Zero-Dimensional Organic-Inorganic Hybrid Metal Halide Perovskite─[(CH 3) 4N] 2SnCl 6. Inorg Chem 2023; 62:14422-14430. [PMID: 37607342 DOI: 10.1021/acs.inorgchem.3c02293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Metal ion-doped zero-dimensional halide perovskites provide good platforms to generate broadband emission and explore the fundamental dynamics of emission regulations. Recently, Sb3+-doped zero-dimensional halide perovskites have attracted considerable attention for the high quantum yield of yellow emission; however, the triplet state recombination is activated and the singlet state emission is usually absent. Herein, we fabricate an Sb3+-doped zero-dimensional [(CH3)4N]2SnCl6 perovskite that can induce singlet and triplet emission. Density functional theory calculation shows that there are some overlaps between the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals, which may induce a large energy separation between the lowest excited triplet states (T1) and the lowest excited singlet states (S1) [ΔE(S1 - T1)], impeding all the carriers' transfer from the singlet state to the triplet state. As a result, the reserved singlet emission together with the triplet emission can be regulated by excitation wavelength in situ. In addition, different Bi3+ ratios are co-doped into Sb3+@[(CH3)4N]2SnCl6, resulting in a photoluminescence ex situ regulation. Single-phase white light LED and optical anti-counterfeiting are developed further.
Collapse
Affiliation(s)
- Yu Zhong
- Fujian Key Laboratory of Polymer Materials, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
- Qinghai Environmental Monitoring Center, Xining 810000, P. R. China
| | - Si-Ping Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, P. R. China
| | - Yang-Peng Lin
- Fujian Key Laboratory of Polymer Materials, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Xing-Hui Qi
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Bin Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, People's Republic of China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ke-Zhao Du
- Fujian Key Laboratory of Polymer Materials, Collage of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| |
Collapse
|
6
|
Cao J, Liu K, Quan M, Hou A, Jiang X, Lin Z, Zhao J, Liu Q. Second harmonic generation from symmetry breaking stimulated by mixed organic cations in zero-dimensional hybrid metal halides. Dalton Trans 2023. [PMID: 37357846 DOI: 10.1039/d3dt01209c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Mixing cations with different chemical properties to induce the generation of asymmetric structures is a new approach for tuning the optical properties of hybrid organic-inorganic metal halides (HOIMHs). In this study, zero-dimensional (C9N3H15)(C9H13SO)MBr6 (M = Bi/Sb, [C9N3H15]2+ = [(C4N2H10)(C5NH5)]2+ and [C9H14SO]+ = [CH3(C6H4)OS(CH3)2]+) are synthesized. Two different cations cause both compounds to crystallize in the polar space group P212121, thus resulting in significant phase matchable second harmonic generation under a 1064 nm laser excitation. Thus, (C9N3H15)(C9H13SO)BiBr6 and (C9N3H15)(C9H13SO)SbBr6 exhibit intensities that are approximately 1.8 and 1.7 times that of KH2PO4, respectively. The results of density functional theory calculations show that both (C9N3H15)(C9H13SO)BiBr6 and (C9N3H15)(C9H13SO)SbBr6 exhibit direct bandgaps of 2.95 and 2.81 eV, respectively. Additionally, because of the distortion of the inorganic octahedra, (C9N3H15)(C9H13SO)SbBr6 exhibited bright yellow emission at room temperature, which is attributed to ns2 fluorescence emission. We believe that the symmetry of the HOIMH crystal structure can be broken by introducing spatially differentiated bifunctional organic cations, which consequently enables even-order nonlinear activities.
Collapse
Affiliation(s)
- Jindong Cao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Mingzhen Quan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - An Hou
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xingxing Jiang
- Key Lab Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Zheshuai Lin
- Key Lab Functional Crystals and Laser Technology of Chinese Academy of Sciences, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Molecular dimensionality and photoluminescence of hybrid metal halides. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhu C, Jin J, Gao M, Oddo AM, Folgueras MC, Zhang Y, Lin CK, Yang P. Supramolecular Assembly of Halide Perovskite Building Blocks. J Am Chem Soc 2022; 144:12450-12458. [PMID: 35771005 DOI: 10.1021/jacs.2c04357] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural diversity and tunable optoelectronic properties of halide perovskites originate from the rich chemistry of the metal halide ionic octahedron [MX6]n- (M = Pb2+, Sb3+, Te4+, Sn4+, Pt4+, etc.; X = Cl-, Br-, and I-). The properties of the extended perovskite solids are dictated by the assembly, connectivity, and interaction of these octahedra within the lattice environment. Hence, the ability to manipulate and control the assembly of the octahedral building blocks is paramount for constructing new perovskite materials. Here, we propose a systematic supramolecular strategy for the assembly of [MX6]n- octahedra into a solid extended network. Interaction of alkali metal-bound crown ethers with the [M(IV)X6]2- octahedron resulted in a structurally and optoelectronically tunable "dumbbell" structural unit in solution. Single crystals with diverse packing geometries and symmetries will form as the solid assembly of this new supramolecular building block. This supramolecular assembly route introduces a new general strategy for designing halide perovskite structures with potentially new optoelectronic properties.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Mengyu Gao
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander M Oddo
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Maria C Folgueras
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ye Zhang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Chung-Kuan Lin
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States.,Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Luo Z, Liu Y, Liu Y, Li C, Li Y, Li Q, Wei Y, Zhang L, Xu B, Chang X, Quan Z. Integrated Afterglow and Self-Trapped Exciton Emissions in Hybrid Metal Halides for Anti-Counterfeiting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200607. [PMID: 35233840 DOI: 10.1002/adma.202200607] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
0D hybrid metal halides (0D HMHs) are considered to be promising luminescent emitters. 0D HMHs commonly exhibit self-trapped exciton (STE) emissions originating from the inorganic metal halide anion units. Exploring and utilizing the emission features of the organic cation units in 0D HMHs is highly desired to enrich their optical properties as multifunctional luminescent materials. Here, tunable emissions from organic and inorganic units are successfully achieved in triphenylsulfonium (Ph3 S+ )-based 0D HMHs. Notably, integrated afterglow and STE emissions with adjustable intensities are obtained in (Ph3 S)2 Sn1- x Tex Cl6 (x = 0-1) via the delicate combination of [SnCl6 ]2- and [TeCl6 ]2- . Moreover, such a strategy can be readily extended to develop other HMH materials with intriguing optical properties. As a demonstration, 0D (Ph3 S)2 Zn1- x Mnx Cl4 (x = 0-1) are constructed to achieve integrated afterglow and Mn2+ d-d emissions with high efficiency. Consequently, these novel 0D HMHs with colorful afterglow and STE emissions are applied in multiple anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yejing Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yawen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qian Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Liming Zhang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Xu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiaoyong Chang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
10
|
Gemeda FT, Vorobyev V, Tarnovsky AN. Ultrafast Solution-Phase Photophysical and Photochemical Dynamics of Hexaiodobismuthate(III), the Heart of Bismuth Halide Perovskite Solar Cells. J Phys Chem B 2022; 126:1254-1267. [PMID: 35118867 DOI: 10.1021/acs.jpcb.1c10350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ultrafast relaxation pathways in a hexaiodide bismuth(III) complex, BiI63-, excited at 530 nm in acetonitrile solution are studied by means of femtosecond transient absorption spectroscopy supported by steady-state absorption/emission measurements and DFT computations. Radiationless relaxation out of the Franck-Condon, largely metal-centered (MC) triply degenerate 3T1u state (46 ± 19 fs), is driven by vibronic coupling due to the Jahn-Teller effect in the excited state. The relaxation populates two lower-energy states: a ligand-to-metal charge transfer (LMCT) excited state of 3π I(5pπ) → Bi(6p) nature and a luminescent "trap" 3A1u(3P0) MC state. Coherent population transfer from the initial 3T1u into the 3π LMCT state occurs in an oscillatory, stepwise manner at ∼190 and ∼550 fs with a population ratio of ∼4:1. The 3π LMCT state decays with a 2.9 ps lifetime, yielding two short-lived reaction intermediates of which the first one reforms the parent ground state with a 15 ps time constant, and the second one decays on a ∼5 ps timescale generating the triplet product species, which persists to the longest 2 ns delay times investigated. This product is identified as the η2 metal-ligated diiodide-bismuth adduct with the intramolecularly formed I-I bond, [(η2-I2)Bi(II)I4]3-, which is the species of interest for solar energy conversion and storage applications. The lifetime of the "trap" 3A1u state is estimated to be 13 ns from the photoluminescence quenching of BiI63-. The findings give insight into the excited-state relaxation dynamics and the photochemical reaction mechanisms in halide complexes of heavy ns2 metal ions.
Collapse
Affiliation(s)
- Firew T Gemeda
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Vasily Vorobyev
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Alexander N Tarnovsky
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
11
|
Chang T, Wang H, Gao Y, Cao S, Zhao J, Zou B, Zeng R. Component Engineering to Tailor the Structure and Optical Properties of Sb-Doped Indium-Based Halides. Inorg Chem 2022; 61:1486-1494. [PMID: 34982544 DOI: 10.1021/acs.inorgchem.1c03176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Controlling the structure of halide perovskites through component engineering, and thus revealing the changes in luminescence properties caused by the conversion of crystal structure, is of great significance. Herein, we report a controllable synthetic strategy of three-dimensional (3D) Cs2KInCl6 and zero-dimensional (0D) (Cs/K)2InCl5(H2O) halide perovskites by changing the Cs/K feed ratio. 3D Cs2KInCl6 double perovskites are obtained at the Cs/K feed ratio of 1:1, while 0D (Cs/K)2InCl5(H2O) perovskites are formed at the Cs/K feed ratio of 2:1. Further, a reversible crystal structure transformation between 3D Cs2KInCl6 double perovskites and 0D (Cs/K)2InCl5(H2O) perovskites can be achieved by subsequent addition of metal-salt precursors. In addition, the emission efficiency of two perovskite structures can be greatly boosted by breaking the forbidden transition through Sb doping, and as a result, a novel green/yellow reversible emission switch is generated. Meanwhile, the relationship between perovskite structure and luminescence mechanism has been systematically revealed. These environmentally stable halide perovskites have great potential to be applied in optoelectronic devices.
Collapse
Affiliation(s)
- Tong Chang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Haiyan Wang
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Yilin Gao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Lin J, Liu K, Ruan H, Sun N, Chen X, Zhao J, Guo Z, Liu Q, Yuan W. Zero-Dimensional Lead-Free Halide with Indirect Optical Gap and Enhanced Photoluminescence by Sb Doping. J Phys Chem Lett 2022; 13:198-207. [PMID: 34967650 DOI: 10.1021/acs.jpclett.1c03649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three new lead-free organic-inorganic metal halides (OIMHs) (C7H8N3)3InX6·H2O (X = Cl, Br) and (C7H8N3)2SbBr5 were synthesized. First-principles calculations indicate that the highest occupied molecular orbitals (HOMOs) of the two In-based OIMHs are constituted of π orbitals from [C7H8N3]+ spacers. (C7H8N3)3InX6·H2O (X = Cl, Br) shows an indirect optical gap, which may result from this organic-contributed band edge. Despite the indirect-gap nature with extra phonon process during absorption, the photoluminescence of (C7H8N3)3InBr6·H2O can still be significantly enhanced through Sb doping, with the internal photoluminescence quantum yields (PLQY) increased 10-fold from 5% to 52%. A white light-emitting diode (WLED) was fabricated based on (C7H8N3)3InBr6·H2O:Sb3+, exhibiting a high color-rendering index of 90. Our work provides new systems to deeply understand the principles for organic spacer choice to obtain the 0D metal OIMHs with specific band structure and also the significant enhancement of luminescence performance by chemical doping.
Collapse
Affiliation(s)
- Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hang Ruan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Niu Sun
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
13
|
Kim H, Khan A, Daniel J, Rooh G, Vuong PQ. Thallium-based heavy inorganic scintillators: recent developments and future perspectives. CrystEngComm 2022. [DOI: 10.1039/d1ce01422f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current development status and future perspectives of Tl-based inorganic scintillators are highlighted in this study.
Collapse
Affiliation(s)
- HongJoo Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Arshad Khan
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Joseph Daniel
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - Gul Rooh
- Department of Physics, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Phan Quoc Vuong
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
14
|
Photoluminescent ionic metal halides based on s2 typed ions and aprotic ionic liquid cations. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214185] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Peng YC, Jin JC, Gu Q, Dong Y, Zhang ZZ, Zhuang TH, Gong LK, Ma W, Wang ZP, Du KZ, Huang XY. Selective Luminescence Response of a Zero-Dimensional Hybrid Antimony(III) Halide to Solvent Molecules: Size-Effect and Supramolecular Interactions. Inorg Chem 2021; 60:17837-17845. [PMID: 34738796 DOI: 10.1021/acs.inorgchem.1c02445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zero-dimensional (0D) metal halides with solid-state luminescence switching (SSLS) have attracted attention as sensors and luminescent anticounterfeiting. Herein, selective solvent molecule response and accordingly luminescence switching were discovered in 0D [EtPPh3]2[SbCl5] (1, EtPPh3 = ethyltriphenylphosphonium). More than a dozen kinds of solvent molecules have been tested to find out the selection rule for molecule absorption in 1, which is demonstrated to be the size effect of guest molecules. Confirmed by crystal structural analysis, only the solvents with molecular volume less than 22.3 Å3 could be accommodated in 1 leading to the solvatochromic photoluminescence (PL). The mechanism of solvatochromic PL was also deeply studied, which was found to be closely related to the supramolecular interactions between solvent molecules and the host material. Different functional groups of the solvent molecule can affect its strength of hydrogen bonding with [SbCl5]2-, which is crucial for the distortion level of [SbCl5]2- unit and thus results in not only distinct solvatochromic PL but also distinct thermochromic PL. In addition, they all show typical self-trapped exciton triplet emissions. The additional supramolecular interactions from guest molecules can enhance the photoluminescence quantum yield to be as high as 95%.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qi Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Zhuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Liao-Kuo Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ze-Ping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
16
|
Kundu J, Das DK. Low Dimensional, Broadband, Luminescent Organic‐Inorganic Hybrid Materials for Lighting Applications. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Janardan Kundu
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati Andhra Pradesh India
| | - Deep Kumar Das
- Department of Chemistry Indian Institute of Science Education and Research (IISER) Tirupati Tirupati Andhra Pradesh India
| |
Collapse
|
17
|
Li M, Lin J, Liu K, Fan L, Wang N, Guo Z, Yuan W, Zhao J, Liu Q. Light-Emitting 0D Hybrid Metal Halide (C 3H 12N 2) 2Sb 2Cl 10 with Antimony Dimers. Inorg Chem 2021; 60:11429-11434. [PMID: 34242012 DOI: 10.1021/acs.inorgchem.1c01440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-dimensional organic-inorganic metal halides (OIMHs), as emerging light-emitting materials, have aroused widespread attention owing to their unique structural tunability and photoelectric characteristics. OIMHs are also promising materials for optoelectronic equipment, light-emitting diodes, and photodetectors. In this study, (C3H12N2)2Sb2Cl10 (C3H12N22+ is an N-methylethylenediamine cation), a new zero-dimensional OIMH, has been reported, and (C3H12N2)2Sb2Cl10 possesses a P21/n space group. The (C3H12N2)2Sb2Cl10 structure contains [Sb2Cl10]4- dimers (composed of two edge-sharing [SbCl6]3- octahedra) that are surrounded by C3H12N22+ cations. The experimental band gap of (C3H12N2)2Sb2Cl10 is 3.80 eV, and density functional theory calculation demonstrates that (C3H12N2)2Sb2Cl10 possesses a direct band gap, with the edge of the band gap mainly contributed from the inorganic units. (C3H12N2)2Sb2Cl10 exhibits good ambient and thermal stability. Under 395 nm excitation at room temperature, (C3H12N2)2Sb2Cl10 exhibits a broad emission with a full width at half-maximum of ∼114 nm, peaking at 480 nm, and the broad emission was ascribed to self-trapped exciton emission.
Collapse
Affiliation(s)
- Mingyang Li
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiawei Lin
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liubing Fan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Na Wang
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongnan Guo
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenxia Yuan
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
18
|
Ayscue RL, Vallet V, Bertke JA, Réal F, Knope KE. Structure-Property Relationships in Photoluminescent Bismuth Halide Organic Hybrid Materials. Inorg Chem 2021; 60:9727-9744. [PMID: 34128679 DOI: 10.1021/acs.inorgchem.1c01025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Seven novel bismuth(III)-halide phases, Bi2Cl6(terpy)2·0.5(H2O) (1), Bi2Cl4(terpy)2(k2-TC)2(2) (TC = 2-thiophene monocarboxylate), BiCl(terpy)(k2-TC)2 (3A-Cl), BiBr(terpy)(k2-TC)2 (3A-Br), BiCl(terpy)(k2-TC)2 (3B-Cl), [BiCl(terpy)(k2-TC)2][Bi(terpy)(k2-TC)3]·0.55(TCA) (4), [BiBr3(terpy)(MeOH)] (5), and [BiBr2(terpy)(k2-TC)][BiBr1.16(terpy)(k2-TC)1.84] (6), were prepared under mild synthetic conditions from methanolic/aqueous solutions containing BiX3 (X = Cl, Br) and 2,2':6',2″-terpyridine (terpy) and/or 2-thiophene monocarboxylic acid (TCA). A heterometallic series, 3A-Bi1-xEuxCl, with the general formula Bi1-xEuxCl(terpy)(k2-TC)2 (x = 0.001, 0.005, 0.01, 0.05) was also prepared through trace Eu doping of the 3A-Cl phase. The structures were determined through single-crystal X-ray diffraction and are built from a range of molecular units including monomeric and dimeric complexes. The solid-state photoluminescent properties of the compounds were examined through steady-state and time-resolved methods. While the homometallic phases exhibited broad green to yellow emission, the heterometallic phases displayed yellow, orange, and red emission that can be attributed to the simultaneous ligand/Bi-halide and Eu centered emissions. Photoluminescent color tuning was achieved by controlling the relative intensities of these concurrent emissions through compositional modifications including the Eu doping percentage. Notably, all emissive homo- and heterometallic phases exhibited rare visible excitation pathways that based on theoretical quantum mechanical calculations are attributed to halide-metal to ligand charge transfer (XMLCT). Through a combined experimental and computational approach, fundamental insight into the structure-property relationships within these Bi halide organic hybrid materials is provided.
Collapse
Affiliation(s)
- R Lee Ayscue
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057, United States
| | - Valérie Vallet
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057, United States
| | - Florent Réal
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Karah E Knope
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057, United States
| |
Collapse
|
19
|
Liu X, Li Y, Liang T, Fan J. Role of Polyhedron Unit in Distinct Photophysics of Zero-Dimensional Organic-Inorganic Hybrid Tin Halide Compounds. J Phys Chem Lett 2021; 12:5765-5773. [PMID: 34133184 DOI: 10.1021/acs.jpclett.1c01540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The zero-dimensional (0D) metal halides comprising isolated metal-halide polyhedra are the smallest inorganic quantum systems and accommodate quasi-localized Frenkel excitons with unique photophysics of broadband luminescence, huge Stokes shift, and long lifetime. Little is known about the role of polyhedron type in the characteristics of 0D metal halides. We comparatively study three novel kinds of 0D hybrid tin halides having identical organic groups. They are efficient light emitters with a maximal quantum yield of 92.3%. Their most stable phases are composed of octahedra for the bromide and iodide but disphenoids for the chloride. They separately exhibit biexponential and monoexponential luminescence decays due to different symmetries and electronic structures. The chloride has the largest absorption and smallest emission photon energies. A proposed model regarding unoccupied-energy-band degeneracy explains well the experimental phenomena and reveals the crucial role of polyhedron type in determining optical properties of the 0D tin halides.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Physics, Southeast University, Nanjing 211189, P.R. China
| | - Yuanyuan Li
- School of Physics, Southeast University, Nanjing 211189, P.R. China
| | - Tianyuan Liang
- School of Physics, Southeast University, Nanjing 211189, P.R. China
| | - Jiyang Fan
- School of Physics, Southeast University, Nanjing 211189, P.R. China
| |
Collapse
|
20
|
Fan L, Liu K, Zeng Q, Li M, Cai H, Zhou J, He S, Zhao J, Liu Q. Efficiency-Tunable Single-Component White-Light Emission Realized in Hybrid Halides Through Metal Co-Occupation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29835-29842. [PMID: 34130456 DOI: 10.1021/acsami.1c07636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic-inorganic hybrid metal halides have attracted widespread attention as emerging optoelectronic materials, especially in solid-state lighting, where they can be used as single-component white-light phosphors for white light-emitting diodes. Herein, we have successfully synthesized a zero-dimensional (0D) organic-inorganic hybrid mixed-metal halide (Bmpip)2PbxSn1-xBr4 (0 < x < 1, Bmpip+ = 1-butyl-1-methyl-piperidinium, C10H22N+) that crystallizes in a monoclinic system in the C2/c space group. Pb2+ and Sn2+ form a four-coordinate seesaw structure separated by organic cations forming a 0D structure. For different excitation wavelengths, (Bmpip)2PbxSn1-xBr4 (0 < x < 1) exhibits double-peaked emission at 470 and 670 nm. The emission color of (Bmpip)2PbxSn1-xBr4 can be easily tuned from orange-red to blue by adjusting the Pb/Sn molar ratio or excitation wavelength. Representatively, (Bmpip)2Pb0.16Sn0.84Br4 exhibits approximately white-light emission with high photoluminescence quantum yield up to 39%. Interestingly, the color of (Bmpip)2PbxSn1-xBr4 can also be easily tuned by temperature, promising its potential for application in temperature measurement and indication. Phosphor-converted light-emitting diodes are fabricated by combining (Bmpip)2PbxSn1-xBr4 and 365 nm near-UV LED chips and exhibit high-quality light output.
Collapse
Affiliation(s)
- Liubing Fan
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kunjie Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qindan Zeng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology& Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Mingyang Li
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hao Cai
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Zhou
- Department of Physics, Beijing Technology and Business University, Beijing 100048, China
| | - Shihui He
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Zhao
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Quanlin Liu
- The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
21
|
Zhang ZZ, Jin JC, Gong LK, Lin YP, Du KZ, Huang XY. Co-luminescence in a zero-dimensional organic-inorganic hybrid antimony halide with multiple coordination units. Dalton Trans 2021; 50:3586-3592. [PMID: 33620059 DOI: 10.1039/d0dt04388e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zero-dimensional (0D) organic-inorganic hybrid metal halides (OIMHs) containing multiple halometallate species (HMSs) have received extensive attention due to their capability to achieve multifunctional photophysical characteristics. Herein we report a lead-free 0D-OIMH compound, namely [Emim]8[SbCl6]2[SbCl5] (1, Emim = 1-ethyl-3-methylimidazolium), which is the first crystal containing two distinct mononuclear [SbXn]3-n units in one single structure. The optical absorption, temperature/excitation-variable photoluminescence (PL) and PL decay were studied. 1 exhibits a broad emission centered at 577 nm, which is analyzed to be a combination of the emissions from [SbCl6]3- and [SbCl5]2-. The structural effects including SbSb distances and polyhedral distortion of [SbXn]3-n on the PL of antimony-based 0D-OIMHs are discussed in detail. This work would provide guidance for constructing Sb-based 0D OIMHs composed of multiple halometallate species.
Collapse
Affiliation(s)
- Zhi-Zhuan Zhang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China. and State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jian-Ce Jin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liao-Kuo Gong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
22
|
Physico-chemical characterization: Vibrational, thermal behavior, opto-electric properties and Hirshfeld surface analysis of new Bi(III) halide complexes containing 3,4-diaminopyridinium cation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Morad V, Yakunin S, Benin BM, Shynkarenko Y, Grotevent MJ, Shorubalko I, Boehme SC, Kovalenko MV. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007355. [PMID: 33480450 PMCID: PMC11481058 DOI: 10.1002/adma.202007355] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Luminescent organic-inorganic low-dimensional ns2 metal halides are of rising interest as thermographic phosphors. The intrinsic nature of the excitonic self-trapping provides for reliable temperature sensing due to the existence of a temperature range, typically 50-100 K wide, in which the luminescence lifetimes (and quantum yields) are steeply temperature-dependent. This sensitivity range can be adjusted from cryogenic temperatures to above room temperature by structural engineering, thus enabling diverse thermometric and thermographic applications ranging from protein crystallography to diagnostics in microelectronics. Owing to the stable oxidation state of Sb3+ , Sb(III)-based halides are far more attractive than all major non-heavy-metal alternatives (Sn-, Ge-, Bi-based halides). In this work, the relationship between the luminescence characteristics and crystal structure and microstructure of TPP2 SbBr5 (TPP = tetraphenylphosphonium) is established, and then its potential is showcased as environmentally stable and robust phosphor for remote thermography. The material is easily processable into thin films, which is highly beneficial for high-spatial-resolution remote thermography. In particular, a compelling combination of high spatial resolution (1 µm) and high thermometric precision (high specific sensitivities of 0.03-0.04 K-1 ) is demonstrated by fluorescence-lifetime imaging of a heated resistive pattern on a flat substrate, covered with a solution-spun film of TPP2 SbBr5 .
Collapse
Affiliation(s)
- Viktoriia Morad
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Sergii Yakunin
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Bogdan M. Benin
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Matthias J. Grotevent
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Ivan Shorubalko
- Laboratory for Transport at Nanoscale InterfacesEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Simon C. Boehme
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic ChemistryDepartment of Chemistry and Applied BioscienceETH ZürichVladimir Prelog Weg 1ZürichCH‐8093Switzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa – Swiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 129DübendorfCH‐8600Switzerland
| |
Collapse
|
24
|
Abstract
This review provides in-depth insight into the structure–luminescence–application relationship of 0D all-inorganic/organic–inorganic hybrid metal halide luminescent materials.
Collapse
Affiliation(s)
- Mingze Li
- The State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
| |
Collapse
|
25
|
Li Z, Song G, Li Y, Wang L, Zhou T, Lin Z, Xie RJ. Realizing Tunable White Light Emission in Lead-Free Indium(III) Bromine Hybrid Single Crystals through Antimony(III) Cation Doping. J Phys Chem Lett 2020; 11:10164-10172. [PMID: 33196191 DOI: 10.1021/acs.jpclett.0c03079] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Low-dimensional metal halide hybrids (OIMHs) have recently been explored as single-component white-light emitters for use in solid-state lighting. However, it still remains challenging to realize tunable white-light emission in lead-free zero-dimensional (0D) hybrid system. Here, a combination strategy has been proposed through doping Sb3+ enabling and balancing multiple emission centers toward the multiband warm white light. We first synthesized a new lead-free 0D (C8NH12)6InBr9·H2O single crystal, in which isolated [InBr6]3- octahedral units are separated by large organic cations [C8NH12]+. (C8NH12)6InBr9·H2O exhibits dual-band emissions with one intense cyan emission and a weak red emission tail. The low-energy ultrabroadband red emission tail can be greatly enhanced by the Sb3+ doping. Experimental data and first-principles calculations reveal that the original dominant cyan emission is originated from the organic cations [C8NH12]+ and that the broadband red emission is ascribed to self-trapped excitons in [In(Sb)Br6]3-. When the Sb concentration is 0.1%, a single-component warm white-light emission with a photoluminescence quantum efficiency of 23.36%, correlated color temperature of 3347 K, and a color rendering index up to 84 can be achieved. This work represents a significant step toward the realization of single-component white-light emissions in environmental-friendly, high-performance 0D metal halide light-emitting materials.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Province Key Laboratory of Materials Genome, Xiamen University, Simingnan Road 422, Xiamen 361005, P. R. China
| | - Gaomin Song
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ye Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Province Key Laboratory of Materials Genome, Xiamen University, Simingnan Road 422, Xiamen 361005, P. R. China
| | - Le Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, Zhejiang, P. R. China
| | - Tianliang Zhou
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Province Key Laboratory of Materials Genome, Xiamen University, Simingnan Road 422, Xiamen 361005, P. R. China
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Rong-Jun Xie
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Province Key Laboratory of Materials Genome, Xiamen University, Simingnan Road 422, Xiamen 361005, P. R. China
| |
Collapse
|
26
|
Shargaieva O, Kuske L, Rappich J, Unger E, Nickel NH. Building Blocks of Hybrid Perovskites: A Photoluminescence Study of Lead-Iodide Solution Species. Chemphyschem 2020; 21:2327-2333. [PMID: 32786129 PMCID: PMC7702157 DOI: 10.1002/cphc.202000479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/10/2020] [Indexed: 11/07/2022]
Abstract
In this work, we present a detailed investigation of the optical properties of hybrid perovskite building blocks, [PbI2+n ]n- , that form in solutions of CH3 NH3 PbI3 and PbI2 . The absorbance, photoluminescence (PL) and photoluminescence excitation (PLE) spectra of CH3 NH3 PbI3 and PbI2 solutions were measured in various solvents and a broad concentration range. Both CH3 NH3 PbI3 and PbI2 solutions exhibit absorption features attributed to [PbI3 ]1- and [PbI4 ]2- complexes. Therefore, we propose a new mechanism for the formation of polymeric polyiodide plumbates in solutions of pristine PbI2 . For the first time, we show that the [PbI2+n ]n- species in both solutions of CH3 NH3 PbI3 and PbI2 exhibit a photoluminescence peak at about 760 nm. Our findings prove that the spectroscopic properties of both CH3 NH3 PbI3 and PbI2 solutions are dominated by coordination complexes between Pb2+ and I- . Finally, the impact of these complexes on the properties of solid-state perovskite semiconductors is discussed in terms of defect formation and defect tolerance.
Collapse
Affiliation(s)
- Oleksandra Shargaieva
- Young Investigator Group „Hybrid Materials Formation and Scaling“Helmholtz-Zentrum Berlin für Materialien und Energie GmbHKekuléstr. 512489BerlinGermany
| | - Lena Kuske
- Interdisziplinäres Zentrum für MaterialwissenschaftenMartin-Luther UniversitätHeinrich-Damerow-Str. 406120HalleGermany
| | - Jörg Rappich
- Institute Silicon PhotovoltaicsHelmholtz-Zentrum Berlin für Materialien und Energie GmbHKekuléstr. 512489BerlinGermany
| | - Eva Unger
- Young Investigator Group „Hybrid Materials Formation and Scaling“Helmholtz-Zentrum Berlin für Materialien und Energie GmbHKekuléstr. 512489BerlinGermany
| | - Norbert H. Nickel
- Institute Silicon PhotovoltaicsHelmholtz-Zentrum Berlin für Materialien und Energie GmbHKekuléstr. 512489BerlinGermany
| |
Collapse
|
27
|
Elleuch N, Lhoste J, Boujelbene M. Characterization, Hirshfeld surface analysis andvibrational properties of 2,6-diaminopurinium chloride tetrachloroantimonates(III) monohydrate (C5H8N6)[SbCl4]Cl·H2O. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
McCall KM, Morad V, Benin BM, Kovalenko MV. Efficient Lone-Pair-Driven Luminescence: Structure-Property Relationships in Emissive 5s 2 Metal Halides. ACS MATERIALS LETTERS 2020; 2:1218-1232. [PMID: 32954359 PMCID: PMC7491574 DOI: 10.1021/acsmaterialslett.0c00211] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/04/2020] [Indexed: 05/19/2023]
Abstract
Low-dimensional metal halides have been the focus of intense investigations in recent years following the success of hybrid lead halide perovskites as optoelectronic materials. In particular, the light emission of low-dimensional halides based on the 5s2 cations Sn2+ and Sb3+ has found utility in a variety of applications complementary to those of the three-dimensional halide perovskites because of its unusual properties such as broadband character and highly temperature-dependent lifetime. These properties derive from the exceptional chemistry of the 5s2 lone pair, but the terminology and explanations given for such emission vary widely, hampering efforts to build a cohesive understanding of these materials that would lead to the development of efficient optoelectronic devices. In this Perspective, we provide a structural overview of these materials with a focus on the dynamics driven by the stereoactivity of the 5s2 lone pair to identify the structural features that enable strong emission. We unite the different theoretical models that have been able to explain the success of these bright 5s2 emission centers into a cohesive framework, which is then applied to the array of compounds recently developed by our group and other researchers, demonstrating its utility and generating a holistic picture of the field from the point of view of a materials chemist. We highlight those state-of-the-art materials and applications that demonstrate the unique capabilities of these versatile emissive centers and identify promising future directions in the field of low-dimensional 5s2 metal halides.
Collapse
Affiliation(s)
- Kyle M. McCall
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Viktoriia Morad
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Bogdan M. Benin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
29
|
Benin BM, McCall KM, Wörle M, Morad V, Aebli M, Yakunin S, Shynkarenko Y, Kovalenko MV. The Rb
7
Bi
3−3
x
Sb
3
x
Cl
16
Family: A Fully Inorganic Solid Solution with Room‐Temperature Luminescent Members. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bogdan M. Benin
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Kyle M. McCall
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Michael Wörle
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Viktoriia Morad
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Marcel Aebli
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Sergii Yakunin
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic Chemistry ETH Zürich 8093 Zürich Switzerland
- Laboratory for Thin Films and Photovoltaics Empa—Swiss Federal Laboratories for Materials 8600 Dübendorf Switzerland
| |
Collapse
|
30
|
Benin BM, McCall KM, Wörle M, Morad V, Aebli M, Yakunin S, Shynkarenko Y, Kovalenko MV. The Rb 7 Bi 3-3x Sb 3x Cl 16 Family: A Fully Inorganic Solid Solution with Room-Temperature Luminescent Members. Angew Chem Int Ed Engl 2020; 59:14490-14497. [PMID: 32472624 PMCID: PMC7496723 DOI: 10.1002/anie.202003822] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Low-dimensional ns2 -metal halide compounds have received immense attention for applications in solid-state lighting, optical thermometry and thermography, and scintillation. However, these are based primarily on the combination of organic cations with toxic Pb2+ or unstable Sn2+ , and a stable inorganic luminescent material has yet to be found. Here, the zero-dimensional Rb7 Sb3 Cl16 phase, comprised of isolated [SbCl6 ]3- octahedra and edge-sharing [Sb2 Cl10 ]4- dimers, shows room-temperature photoluminescence (RT PL) centered at 560 nm with a quantum yield of 3.8±0.2 % at 296 K (99.4 % at 77 K). The temperature-dependent PL lifetime rivals that of previous low-dimensional materials with a specific temperature sensitivity above 0.06 K-1 at RT, making it an excellent thermometric material. Utilizing both DFT and chemical substitution with Bi3+ in the Rb7 Bi3-3x Sb3x Cl16 (x≤1) family, we present the edge-shared [Sb2 Cl10 ]4- dimer as a design principle for Sb-based luminescent materials.
Collapse
Affiliation(s)
- Bogdan M. Benin
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Kyle M. McCall
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Michael Wörle
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
| | - Viktoriia Morad
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Marcel Aebli
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Sergii Yakunin
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| | - Maksym V. Kovalenko
- Laboratory of Inorganic ChemistryETH Zürich8093ZürichSwitzerland
- Laboratory for Thin Films and PhotovoltaicsEmpa—Swiss Federal Laboratories for Materials8600DübendorfSwitzerland
| |
Collapse
|
31
|
Morad V, Yakunin S, Kovalenko MV. Supramolecular Approach for Fine-Tuning of the Bright Luminescence from Zero-Dimensional Antimony(III) Halides. ACS MATERIALS LETTERS 2020; 2:845-852. [PMID: 32954358 PMCID: PMC7493224 DOI: 10.1021/acsmaterialslett.0c00174] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/17/2020] [Indexed: 05/25/2023]
Abstract
Halides of ns2 metal ions have recently regained broad research interest as bright narrowband and broadband emitters. Sb(III) is particularly appealing for its oxidative stability (compared to Ge2+ and Sn2+) and low toxicity (compared to Pb2+). Square pyramidal SbX5 anion had thus far been the most common structural motif for realizing high luminescence efficiency, typically when cocrystallized with an organic cation. Luminescent hybrid organic-inorganic halides with octahedral coordination of Sb(III) remain understudied, whereas fully inorganic compounds show very limited structural engineerability. We show that the host-guest complexation of alkali metal cations with crown ethers fosters the formation of zero-dimensional Sb(III) halides and allows for adjusting the coordination number (5 or 6). The obtained compounds exhibit bright photoluminescence with quantum yields of up to 89% originating from self-trapped excitons, with emission energies, Stokes shifts, and luminescence lifetimes finely-adjustable by structural engineering. A combination of environmental stability and strong, intrinsic temperature-dependence of the luminescence lifetimes in the nanosecond-to-microsecond range nominate these compounds as highly potent luminophores for remote thermometry and thermography owing to their sensitivity range of 200-450 K and high specific sensitivities of 0.04 °C-1.
Collapse
Affiliation(s)
- Viktoriia Morad
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Sergii Yakunin
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
| | - Maksym V. Kovalenko
- Laboratory
of Inorganic Chemistry, Department of Chemistry and Applied Bioscience, ETH Zürich, Vladimir Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
32
|
Su B, Song G, Molokeev MS, Lin Z, Xia Z. Synthesis, Crystal Structure and Green Luminescence in Zero-Dimensional Tin Halide (C8H14N2)2SnBr6. Inorg Chem 2020; 59:9962-9968. [DOI: 10.1021/acs.inorgchem.0c01103] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Binbin Su
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Gaomin Song
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Maxim S. Molokeev
- Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia
- Siberian Federal University, Krasnoyarsk 660041, Russia
- Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia
| | - Zheshuai Lin
- Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
33
|
Abdel-Aal SK, Abdel-Rahman AS, Gamal WM, Abdel-Kader M, Ayoub HS, El-Sherif AF, Kandeel MF, Bozhko S, Yakimov EE, Yakimov EB. Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic-inorganic hybrid perovskite of [NH 3CH 2CH(NH 3)CH 2]BiCl 5. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2019; 75:880-886. [PMID: 32830768 DOI: 10.1107/s2052520619011314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 06/11/2023]
Abstract
In this work the crystal structure by single crystal X-ray measurement and optical properties of 1D propane-1,2-diammonium pentachlorobismuthate [NH3CH2CH(NH3)CH3]BiCl5 organic-inorganic hybrid perovskite are presented. It is prepared by mixing ethanolic solution of equimolar ratios (1:1) of its basic components. The title compound crystallized in the noncentrosymmetric orthorhombic space group Pca21 with Z = 8 molecules per unit cell. The unit-cell parameters are a = 19.8403 (7) Å, b = 6.3303 (2) Å, c = 19.0314 (7) Å. The vibrational spectra are studied by Raman and infrared spectroscopy. The optical properties show a strong absorption in the ultraviolet region, the band gap energy Eg is found to be 3.15 eV. Cathodoluminescence measurements are also discussed.
Collapse
Affiliation(s)
- Seham K Abdel-Aal
- Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Wafia M Gamal
- Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed Abdel-Kader
- Physics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | | | | | - S Bozhko
- Institute of Solid State Physics ISSP, RAS, Chernogolovka, Russian Federation
| | - E E Yakimov
- Institute of Microelectronics Technology RAS, Chernogolovka, 142432, Russian Federation
| | - E B Yakimov
- Institute of Microelectronics Technology RAS, Chernogolovka, 142432, Russian Federation
| |
Collapse
|
34
|
Elleuch N, Fredj D, Chniba-Boudjada N, Boujelbene M. Synthesis of a New Chloro Antimony Complex with Pyridinium Derivative: Crystal Structure, Hirshfeld Surface Analysis, Vibrational, and Optical Properties. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01316-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abstract
The new organic–inorganic hybrid material (C6H7N2S)2[SbCl4]Cl was synthesized by slow evaporation method and characterized by single-crystal X-ray diffraction, infrared absorption, Hirshfeld surface analysis, optical absorption and photoluminescence measurements. The Centro symmetric compound crystallizes in the triclinic system of space group $${\text{P}}\bar{1}$$P1¯ with two formula units cell (Z = 2).The crystal structure is composed of a discrete [SbCl4]− anion and two isolated chloride Cl− anions which carried the same negative charge to balance the total charge of this compound surrounded by the 4 pyridiniumethioamide cations. Organic and inorganic parts which are linked by means of hydrogen bonding contacts N–H···Cl with N···Cl length are varied in the range of 3.221–3.456 Å to form a Zero-dimensional network. The infrared study performed at room temperature charge in the 4000–400 cm−1 frequency regions confirms the existence of the organic cation [C6H7N2S]+ and that of the [SbCl4]− anion. The Photoluminescence spectrum exhibits a broad and strong band of luminescence located at 1.95 eV (635 nm), which can be even observed with the naked eye at room temperature and is due to exaction emission. The various intermolecular interactions of the two independent cations and six chloride atoms were examined via Hirshfeld surface analysis.
Collapse
|
35
|
Morad V, Shynkarenko Y, Yakunin S, Brumberg A, Schaller RD, Kovalenko MV. Disphenoidal Zero-Dimensional Lead, Tin, and Germanium Halides: Highly Emissive Singlet and Triplet Self-Trapped Excitons and X-ray Scintillation. J Am Chem Soc 2019; 141:9764-9768. [PMID: 31244134 DOI: 10.1021/jacs.9b02365] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low-dimensional metal halides have been researched as optoelectronic materials for the past two decades. Zero-dimensional halides of ns2 elements (Sn, Pb, Sb) have recently gained attention as highly efficient broadband light emitters. These compounds comprise discrete metal halide centers, isolated by bulky organic cations. Herein, we report isostructural halide complexes of Ge(II), Sn(II), and Pb(II) with a 1-butyl-1-methyl-piperidinium cation (Bmpip), featuring unusual disphenoidal coordination with a highly stereoactive lone pair. Spectrally broad, bright emission from highly localized excitons, with quantum efficiencies of up to 75%, is observed in blue to red spectral regions for bromides (for Pb, Sn, and Ge, respectively) and extends into the near-infrared for Bmpip2SnI4 (peak at 730 nm). In the case of Sn(II) and Ge(II), both singlet and triplet excitonic emission bands have been observed. Furthermore, Bmpip2SnBr4 and Bmpip2PbBr4 exhibit X-ray-excited luminescence (radioluminescence) with brightness being commensurate with that of a commercial inorganic X-ray scintillator (NaI:Tl).
Collapse
Affiliation(s)
- Viktoriia Morad
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland.,Laboratory for Thin Films and Photovoltaics , Empa-Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Yevhen Shynkarenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland.,Laboratory for Thin Films and Photovoltaics , Empa-Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Sergii Yakunin
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland.,Laboratory for Thin Films and Photovoltaics , Empa-Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| | - Alexandra Brumberg
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Richard D Schaller
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Center for Nanoscale Materials , Argonne National Laboratory , 9700 Cass Avenue , Lemont , Illinois 60439 , United States
| | - Maksym V Kovalenko
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Bioscience , ETH Zürich , Vladimir Prelog Weg 1 , CH-8093 Zürich , Switzerland.,Laboratory for Thin Films and Photovoltaics , Empa-Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland
| |
Collapse
|
36
|
Troian-Gautier L, Turlington MD, Wehlin SAM, Maurer AB, Brady MD, Swords WB, Meyer GJ. Halide Photoredox Chemistry. Chem Rev 2019; 119:4628-4683. [PMID: 30854847 DOI: 10.1021/acs.chemrev.8b00732] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halide photoredox chemistry is of both practical and fundamental interest. Practical applications have largely focused on solar energy conversion with hydrogen gas, through HX splitting, and electrical power generation, in regenerative photoelectrochemical and photovoltaic cells. On a more fundamental level, halide photoredox chemistry provides a unique means to generate and characterize one electron transfer chemistry that is intimately coupled with X-X bond-breaking and -forming reactivity. This review aims to deliver a background on the solution chemistry of I, Br, and Cl that enables readers to understand and utilize the most recent advances in halide photoredox chemistry research. These include reactions initiated through outer-sphere, halide-to-metal, and metal-to-ligand charge-transfer excited states. Kosower's salt, 1-methylpyridinium iodide, provides an early outer-sphere charge-transfer excited state that reports on solvent polarity. A plethora of new inner-sphere complexes based on transition and main group metal halide complexes that show promise for HX splitting are described. Long-lived charge-transfer excited states that undergo redox reactions with one or more halogen species are detailed. The review concludes with some key goals for future research that promise to direct the field of halide photoredox chemistry to even greater heights.
Collapse
Affiliation(s)
- Ludovic Troian-Gautier
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Michael D Turlington
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Sara A M Wehlin
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Andrew B Maurer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Matthew D Brady
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Wesley B Swords
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Gerald J Meyer
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
37
|
Crystal structure, vibrational and optical properties of a new Bi(III) halide complex: [C6H16N2]5Bi2Br10(BiBr6)2·2H2O. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Piecha-Bisiorek A, Gągor A, Jakubas R, Ciżman A, Janicki R, Medycki W. Ferroelectricity in bis(ethylammonium) pentachlorobismuthate(iii): synthesis, structure, polar and spectroscopic properties. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00254h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A brief description of the thermal, structural and dielectric properties of bis(ethylammonium) pentachlorobismuthate(iii) ferroelectric with Ps that equals to 1.4 μC cm−2 at 180 K is presented.
Collapse
Affiliation(s)
| | - Anna Gągor
- W. Trzebiatowski Institute of Low Temperature and Structure Research PAS
- 50-950 Wrocław
- Poland
| | - Ryszard Jakubas
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Agnieszka Ciżman
- Institute of Physics
- Wrocław University of Technology
- Wrocław
- Poland
| | - Rafał Janicki
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Wojciech Medycki
- Institute of Molecular Physics
- Polish Academy of Science
- 60-179 Poznań
- Poland
| |
Collapse
|
39
|
Vogler A. Luminescence of some simple tetracoordinate organoboron complexes in solution. Fluorescence from ligand to ligand CT states. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Wojciechowska M, Szklarz P, Białońska A, Baran J, Janicki R, Medycki W, Durlak P, Piecha-Bisiorek A, Jakubas R. Enormous lattice distortion through an isomorphous phase transition in an organic–inorganic hybrid based on haloantimonate(iii). CrystEngComm 2016. [DOI: 10.1039/c6ce01008c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
|
42
|
New Quasi-One-Dimensional Organic-Inorganic Hybrid Material: 1,3-Bis(4-piperidinium)propane Pentachlorobismuthate(III) Synthesis, Crystal Structure, and Spectroscopic Studies. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/253602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The organic-inorganic hybrid compound (C13H28N2) BiCl5 was synthesized by solvothermal method. The crystal structure was solved by single-crystal X-ray diffraction. The compound crystallizes in the orthorhombic system space group Cmc21 with a=15.826(4) Å, b=18.746(6) Å, c=7.470(3) Å, and Z=4. The crystal structure was refined down to R=0.019. It consists of corrugated layers of [BiCl5]2− chains, separated by organic [H2TMDP]2+ cations (TMDP=1,3-Bis(4-piperidyl)propane = C13H26N2). The crystal cohesion is achieved by hydrogen bonds N–H⋯Cl joining the organic and inorganic layers. The influence of the organic cations' flexibility is discussed. Raman and infrared spectra of the title compound were recorded in the range of 50–400 and 400–4000 cm−1, respectively. Semiempirical parameter model three (PM3) method has been performed to derive the calculated IR spectrum. The crystal shape morphology was simulated using the Bravais-Friedel and Donnay-Harker model.
Collapse
|
43
|
|
44
|
Thermodynamics studies of fluorescence quenching and complexation behavior of thallium(I) ion with some polyazamacrocycles. J Photochem Photobiol A Chem 2006. [DOI: 10.1016/j.jphotochem.2005.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Fernández EJ, Laguna A, López-de-Luzuriaga JM, Montiel M, Olmos ME, Pérez J. Dimethylsulfoxide gold–thallium complexes. Effects of the metal–metal interactions in the luminescence. Inorganica Chim Acta 2005. [DOI: 10.1016/j.ica.2005.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
|
47
|
Strasser A, Vogler A. Optical properties of thallium(I), lead(II) and bismuth(III) hexafluoroacetylacetonates. Intraligand phosphorescence under ambient conditions. INORG CHEM COMMUN 2004. [DOI: 10.1016/j.inoche.2003.12.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Kunkely H, Vogler A. Optical properties of silver(I) hexafluoroantimonate(V): luminescence from a metal-to-metal charge transfer state involving a transition and a main group metal. INORG CHEM COMMUN 2004. [DOI: 10.1016/j.inoche.2003.12.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Abstract
Lead (II) in polar organic solvents such as acetone, acetonitrile, and propylenecarbonate with excess bromide generates the highly luminescent lead-halide cluster Pb(4)Br(11)(3)(-). This in situ sensor does not rely on a host-guest relationship and, thus, is intrinsically selective and sensitive, allowing for the detection of lead at nanomolar concentrations. The cluster's emission maximum and relaxation kinetics are temperature dependent and indicate a close spacing of intralead and intracluster electronic energy levels.
Collapse
Affiliation(s)
- Subodh K Dutta
- Department of Chemistry, Western Michigan University, Kalamazoo 49008, USA
| | | |
Collapse
|
50
|
Kunkely H, Vogler A. Optical properties of bis-(2,4,6-trimethylpyridine)iodine(I) cation: absorption and emission. INORG CHEM COMMUN 2002. [DOI: 10.1016/s1387-7003(02)00527-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|