1
|
Zhang X, Fu B, Li Y, Deng L, Fu W. Effects of habitual foot strike patterns on patellofemoral joint and Achilles tendon loading in recreational runner. Gait Posture 2024; 117:121-128. [PMID: 39701021 DOI: 10.1016/j.gaitpost.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/08/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Most running biomechanics studies have focused on either the patellofemoral joint (PFJ) or Achilles tendon (AT) alone, generating fragmented understanding of how these structures interact as components of an integrated kinetic chain during running. This study was to investigate concurrent biomechanical changes in the PFJ and AT in recreational runners. METHODS The recreational runners who are accustomed to run with rearfoot strike (RFS, n = 15) and forefoot strike (FFS, n = 15) patterns were recruited. They were instructed to run at 10 km/h in cushion shoes with their habitual strike patterns on an instrumented split-belt treadmill. Kinematics of the ankle and knee joints in the sagittal plane and ground reaction forces were recorded simultaneously. The contact force and stress at the PFJ, as well as the force, loading rate, impulse, and stress of the AT, were calculated. RESULTS The habitual RFS runners had significantly higher peak extension moment (p = 0.019, ES = 0.906), peak quadriceps force (p = 0.010, ES = 1.008), PFJ contact force (p = 0.007, ES = 1.056) and stress (p = 0.042, ES = 0.958) than habitual FFS runners. The peak plantar flexion moment (p < 0.001, ES = 2.692), peak AT force (p < 0.001, ES = -1.788), average (p < 0.001, ES = -2.337) and peak AT loading rate (p < 0.001, ES =-1.996), AT impulse (p = 0.002, ES = -1.246) and stress (p = 0.006, ES = -1.082) of the habitual RFS runners were significantly lower than those of the habitual FFS runners. CONCLUSION The FFS pattern could decrease PFJ load but simultaneously increased the mechanical load on the AT. Conversely, the RFS pattern increased PFJ load, but imposed less load on the AT.
Collapse
Affiliation(s)
- Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China; Research Academy of Grand Health, Ningbo University, Ningbo, China; Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Baisheng Fu
- Faculty of Sports Science, Ningbo University, Ningbo, China; Research Academy of Grand Health, Ningbo University, Ningbo, China
| | - Yuxin Li
- Faculty of Sports Science, Ningbo University, Ningbo, China; Research Academy of Grand Health, Ningbo University, Ningbo, China
| | - Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China.
| |
Collapse
|
2
|
der Meulen LV, Bonnaerens S, Caekenberghe IV, Clercq DD, Segers V, Fiers P. Habitual Running Style Matters: Duty Factor, and Not Stride Frequency, Relates to Loading Magnitude. J Hum Kinet 2024; 94:37-45. [PMID: 39563764 PMCID: PMC11571469 DOI: 10.5114/jhk/191528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/23/2024] [Indexed: 11/21/2024] Open
Abstract
Running style is temporally defined by a duty factor and stride frequency and believed to be related to the loading experienced during ever step. However, the exact relationship between both temporal variables and loading magnitude is still unknown. We aimed to identify the relationship between a duty factor and stride frequency with external load measures, joint reaction forces and joint moments. Thirty-one healthy female recreational runners ran across a 25-m runway at a speed of 2.30 ± 0.05 m·s-1. Ground reaction forces and motion capture data were used to determine the maximal vertical ground reaction force, the vertical instantaneous loading rate, peak braking force, peak joint extension moments and peak joint reaction forces at the knee and the ankle. The habitual duty factor and stride frequency of runners did not correlate with each other. The duty factor was found to be a significant predictor of maximal vertical ground reaction force (R2 = 0.585), peak braking force (R2 = 0.153), peak knee extension moment (R2 = 0.149), ankle plantar flexion moment (R2 = 0.225) and peak joint reaction forces at the knee (R2 = 0.591) and the ankle (R2 = 0.592), but not of the vertical instantaneous loading rate. Stride frequency had no significant predictive value. In conclusion, the maximal loading and potential injury risk of female recreational runners running with high duty factors are lower compared to those of peers running with lower duty factors.
Collapse
Affiliation(s)
| | - Senne Bonnaerens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Ine Van Caekenberghe
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Department of Movement and Sports Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dirk De Clercq
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Veerle Segers
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Pieter Fiers
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Kubo S, Yaeshima K, Suzuki T, Daigo E, Kitaoka Y, Kinugasa R. Influence of foot strike pattern on co-contraction around the ankle and oxygen uptake during running at 19 km/h. Physiol Rep 2024; 12:e70023. [PMID: 39245807 PMCID: PMC11381186 DOI: 10.14814/phy2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
This study investigated the coactivation of plantar flexor and dorsiflexor muscles and oxygen uptake during running with forefoot and rearfoot strikes at 15 and 19 km/h. We included 16 male runners in this study. The participants ran each foot strike pattern for 5 min at 15 and 19 km/h on a treadmill. During the running, respiratory gas exchange data and surface electromyographic (EMG) activity of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus, and tibialis anterior muscles of the right lower limb were continuously recorded. The indices of oxygen uptake, energy expenditure (EE), and muscle activation were calculated during the last 2 min in each condition. During the stance phase of running at 15 and 19 km/h, activation of the tibialis anterior and MG muscles was lower and higher, respectively, with forefoot strike than with rearfoot strike. The foot strike pattern did not influence the oxygen uptake. These results suggest that the foot strike pattern has no clear effect on the oxygen uptake when running at 15 and 19 km/h. However, forefoot strike leads to plantar flexion dominance during co-contraction of the tibialis anterior and MG muscles, which are an antagonist and agonist for plantar flexion, respectively, during the stance phase.
Collapse
Affiliation(s)
- Shimpei Kubo
- Department of Human Science, Kanagawa University, Yokohama, Japan
| | | | - Takahito Suzuki
- Department of Welfare and Culture, Okinawa University, Okinawa, Japan
| | - Eiji Daigo
- Department of Human Science, Kanagawa University, Yokohama, Japan
| | - Yu Kitaoka
- Department of Human Science, Kanagawa University, Yokohama, Japan
| | - Ryuta Kinugasa
- Department of Human Science, Kanagawa University, Yokohama, Japan
| |
Collapse
|
4
|
Zhang C, Deng L, Zhang X, Wu K, Zhan J, Fu W, Jin J. Effects of 12-week gait retraining on plantar flexion torque, architecture, and behavior of the medial gastrocnemius in vivo. Front Bioeng Biotechnol 2024; 12:1352334. [PMID: 38572360 PMCID: PMC10987777 DOI: 10.3389/fbioe.2024.1352334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Objective This study aims to explore the effects of 12-week gait retraining (GR) on plantar flexion torque, architecture, and behavior of the medial gastrocnemius (MG) during maximal voluntary isometric contraction (MVIC). Methods Thirty healthy male rearfoot strikers were randomly assigned to the GR group (n = 15) and the control (CON) group (n = 15). The GR group was instructed to wear minimalist shoes and run with a forefoot strike pattern for the 12-week GR (3 times per week), whereas the CON group wore their own running shoes and ran with their original foot strike pattern. Participants were required to share screenshots of running tracks each time to ensure training supervision. The architecture and behavior of MG, as well as ankle torque data, were collected before and after the intervention. The architecture of MG, including fascicle length (FL), pennation angle, and muscle thickness, was obtained by measuring muscle morphology at rest using an ultrasound device. Ankle torque data during plantar flexion MVIC were obtained using a dynamometer, from which peak torque and early rate of torque development (RTD50) were calculated. The fascicle behavior of MG was simultaneously captured using an ultrasound device to calculate fascicle shortening, fascicle rotation, and maximal fascicle shortening velocity (Vmax). Results After 12-week GR, 1) the RTD50 increased significantly in the GR group (p = 0.038), 2) normalized FL increased significantly in the GR group (p = 0.003), and 3) Vmax increased significantly in the GR group (p = 0.018). Conclusion Compared to running training, GR significantly enhanced the rapid strength development capacity and contraction velocity of the MG. This indicates the potential of GR as a strategy to improve muscle function and mechanical efficiency, particularly in enhancing the ability of MG to generate and transmit force as well as the rapid contraction capability. Further research is necessary to explore the effects of GR on MG behavior during running in vivo.
Collapse
Affiliation(s)
- Chuyi Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Liqin Deng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Kaicheng Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jianglong Zhan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jing Jin
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Wei Z, Hou X, Qi Y, Wang L. Influence of foot strike patterns and cadences on patellofemoral joint stress in male runners with patellofemoral pain. Phys Ther Sport 2024; 65:1-6. [PMID: 37976905 DOI: 10.1016/j.ptsp.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES This study aimed to determine the effect of foot strike patterns and cadences in male runners with patellofemoral pain (PFP). DESIGN Cross-sectional study. SETTING Biomechanics lab. METHODS 20 male runners with PFP were instructed to randomly complete six running conditions (three cadence conditions in rearfoot strike pattern (RFS) or forefoot strike (FFS)) under a preferred running speed. MAIN OUTCOME MEASURES The primary outcomes were peak knee joint and moment, and secondary outcomes were patellofemoral joint stress. RESULTS Running with increased cadence has a lower flexion angle (P = 0.027, η2 = 0.45), lower extension moment (P = 0.011, η2 = 0.29), lower internal rotation moment (P = 0.040, η2 = 0.17), lower patellofemoral stress (P = 0.029, η2 = 0.52) than preferred cadence. FFS running performed significantly lower flexion angle (P = 0.003, η2 = 0.39), lower extension moment (P < 0.001, η2 = 0.91), lower adduction moment (P = 0.020, η2 = 0.25) lower patellofemoral stress (P < 0.001, η2 = 0.81) than RFS running for all cadence. CONCLUSIONS Preliminary findings provide new perspectives for male runners with PFP to unload patellofemoral joint stress in managing PFP through the combination of the FFS pattern and increased cadence.
Collapse
Affiliation(s)
- Zhen Wei
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Shanghai, 200438, China.
| | - Xihe Hou
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Shanghai, 200438, China; School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Yujie Qi
- Shanghai Nanxiang Community Health Service Center, Shanghai, China.
| | - Lin Wang
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
6
|
Skypala J, Monte A, Hamill J, Plesek J, Jandacka D. Achilles tendon dimensions, ankle stiffness and footfall patterns in recreational runners. J Sports Sci 2023; 41:812-819. [PMID: 37535868 DOI: 10.1080/02640414.2023.2240631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
The main purpose of this study was to investigate the relationship among Achilles tendon (AT) dimensions, ankle joint stiffness, and footfall patterns in recreational rearfoot and non-rearfoot runners. Based on the foot strike index, a total of 107 runners were divided into rearfoot (47 females/40 males) and non-rearfoot runners (14 females/6 males). All participants had theirs AT dimensions (AT length, AT thickness, and AT moment arm) measured using a combination of ultrasound and motion capture systems. In addition, all performed running trials measured at self-selected speed in laboratory-neutral shoes. A partial correlation coefficient was used for correlations between the selected variables. The results revealed a significant relationship between ankle joint stiffness and level of footfall pattern in rearfoot (r = 0.232, p = 0.032) and non-rearfoot runners (r = -0.811, p < 0.001). The results also suggest a relationship between AT thickness and foot strike index (r = -0.486) in non-rearfoot runners. Runners whose footfall pattern is closer to the heel have greater ankle joint stiffness. Non-rearfoot runners whose footfall pattern is closer to the toe have a thinner AT. Non-rearfoot runners with thicker AT had greater ankle joint stiffness.
Collapse
Affiliation(s)
- Jiri Skypala
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| | - Andrea Monte
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Joseph Hamill
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
- Department of Kinesiology, University of Massachusetts, Amherst, USA
| | - Jan Plesek
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| | - Daniel Jandacka
- Human Motion Diagnostic Center, Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
7
|
Luginsland LA, Haegele JA, Bennett HJ. Lower extremity joint stiffness of autistic adolescents during running at dual speeds. J Biomech 2023; 149:111478. [PMID: 36780731 DOI: 10.1016/j.jbiomech.2023.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
Running is one of the most common forms of physical activity for autistic adolescents. However, research examining their lower extremity dynamics is sparse. In particular, no information exists regarding lower extremity joint stiffness in autistic adolescents. This study compared knee and ankle joint stiffness during the absorption phase of running between autistic adolescents and non-autistic controls. Motion capture and ground reaction forces were recorded for 22 autistic adolescents and 17 non-autistic age, sex, and BMI matched peers who ran at self-selected and standardized (3.0 m/s) speeds. Group × speed knee and ankle joint stiffness, change in moment, and range of motion were compared using mixed-model ANOVAs. There were no group × speed interactions for any variable. Autistic adolescents presented with significant (12 % and 19 %) reduced knee and ankle joint stiffness, respectively. In addition, autistic adolescents had significant reduced changes in knee and ankle joint moments by 11 % and 21 %, respectively, compared to their non-autistic peers. Only knee joint stiffness and knee joint moments were sensitive to running speed, each significantly increasing with speed by 6 %. Current literature suggests joint stiffness is an important mechanism for stability and usage of the stretch shortening cycle (or elastic recoil); as such, it is possible that the reduced ankle plantar flexor and knee extensor stiffness found in autistic adolescents in this study could be indicative of reduced efficiency during running. As group differences existed across both speeds, autistic adolescents may benefit from therapeutic and/or educational interventions targeting efficient running mechanics.
Collapse
Affiliation(s)
- Lauren A Luginsland
- Department of Human Movement Sciences, 2016 Student Recreation Center, Old Dominion University, Norfolk, VA 23529, United States.
| | - Justin A Haegele
- Department of Human Movement Sciences, 2016 Student Recreation Center, Old Dominion University, Norfolk, VA 23529, United States.
| | - Hunter J Bennett
- Department of Human Movement Sciences, 2016 Student Recreation Center, Old Dominion University, Norfolk, VA 23529, United States.
| |
Collapse
|
8
|
Powell DW, Fong HB, Nelson AK. Increasing breast support is associated with altered knee joint stiffness and contributing knee joint biomechanics during treadmill running. Front Sports Act Living 2023; 5:1113952. [PMID: 37152112 PMCID: PMC10160436 DOI: 10.3389/fspor.2023.1113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Greater breast support has been associated with improved running performance as measured by oxygen cost and running economy. Several candidate mechanisms have been proposed to underlie breast support-related improvements in running performance including increased knee joint stiffness. Greater knee joint stiffness has been associated with improved running performance (speed and metabolic cost), though the influence of breast support on knee joint stiffness has not been previously investigated. Therefore, the purpose of this study was to investigate the influence of increasing breast support on knee joint stiffness and its constituent components during treadmill running. Methods Thirteen recreational runners performed a 3-min running bout at their preferred running velocity in each of three breast support conditions: bare chested (CON), low support (LOW) and high support (HIGH) sports bras. Three-dimensional kinematics and ground reaction forces were collected simultaneously using a 10-camera motion capture system (240 Hz, Qualisys Inc.) and instrumented treadmill (1,200 Hz, Bertec Inc.). Visual3D (C-Motion Inc.) was used to calculate knee joint excursions, moments, powers and work while custom software (MATLAB) was used to calculate knee joint stiffness and breast displacements during the stance phase of running in each experimental condition. A series of 1 × 3 repeated measures analysis of covariance with post-hoc t-tests was used to evaluate the effect of breast support on knee joint biomechanics during treadmill running. Results Increasing levels of breast support were associated with greater knee joint stiffness (p = 0.002) as a result of smaller knee flexion excursions (p < 0.001). Increases in knee extension power (p = 0.010) were observed with increasing levels of breast support while no differences were observed in knee extension moments (p = 0.202) or work (p = 0.104). Conclusion Greater breast support is associated with increased knee joint stiffness resulting from smaller joint excursions. These findings may provide insight into the biomechanical mechanisms underlying previously reported improvements in running performance including reduced oxygen consumption and greater running economy.
Collapse
Affiliation(s)
- Douglas W. Powell
- Breast Biomechanics Research Center, College of Health Sciences, University of Memphis, Memphis, TN, United States
- Department of Orthopedic Surgery & Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
- Correspondence: Douglas W. Powell
| | - Hailey B. Fong
- Breast Biomechanics Research Center, College of Health Sciences, University of Memphis, Memphis, TN, United States
| | - Alexis K. Nelson
- Department of Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
9
|
Anderson LM, Martin JF, Barton CJ, Bonanno DR. What is the Effect of Changing Running Step Rate on Injury, Performance and Biomechanics? A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2022; 8:112. [PMID: 36057913 PMCID: PMC9441414 DOI: 10.1186/s40798-022-00504-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022]
Abstract
Background Running-related injuries are prevalent among distance runners. Changing step rate is a commonly used running retraining strategy in the management and prevention of running-related injuries. Objective The aims of this review were to synthesise the evidence relating to the effects of changing running step rate on injury, performance and biomechanics. Design Systematic review and meta-analysis. Data Sources MEDLINE, EMBASE, CINAHL, and SPORTDiscus. Results Thirty-seven studies were included that related to injury (n = 2), performance (n = 5), and biomechanics (n = 36). Regarding injury, very limited evidence indicated that increasing running step rate is associated with improvements in pain (4 weeks: standard mean difference (SMD), 95% CI 2.68, 1.52 to 3.83; 12 weeks: 3.62, 2.24 to 4.99) and function (4 weeks: 2.31, 3.39 to 1.24); 12 weeks: 3.42, 4.75 to 2.09) in recreational runners with patellofemoral pain. Regarding performance, very limited evidence indicated that increasing step rate increases perceived exertion ( − 0.49, − 0.91 to − 0.07) and awkwardness (− 0.72, − 1.38 to − 0.06) and effort (− 0.69, − 1.34, − 0.03); and very limited evidence that an increase in preferred step rate is associated with increased metabolic energy consumption (− 0.84, − 1.57 to − 0.11). Regarding biomechanics, increasing running step rate was associated with strong evidence of reduced peak knee flexion angle (0.66, 0.40 to 0.92); moderate evidence of reduced step length (0.93, 0.49 to 1.37), peak hip adduction (0.40, 0.11 to 0.69), and peak knee extensor moment (0.50, 0.18 to 0.81); moderate evidence of reduced foot strike angle (0.62, 034 to 0.90); limited evidence of reduced braking impulse (0.64, 0.29 to 1.00), peak hip flexion (0.42, 0.10 to 0.75), and peak patellofemoral joint stress (0.56, 0.07 to 1.05); and limited evidence of reduced negative hip (0.55, 0.20 to 0.91) and knee work (0.84, 0.48 to 1.20). Decreasing running step rate was associated with moderate evidence of increased step length (− 0.76, − 1.31 to − 0.21); limited evidence of increased contact time (− 0.95, − 1.49 to − 0.40), braking impulse (− 0.73, − 1.08 to − 0.37), and negative knee work (− 0.88, − 1.25 to − 0.52); and limited evidence of reduced negative ankle work (0.38, 0.03 to 0.73) and negative hip work (0.49, 0.07 to 0.91). Conclusion In general, increasing running step rate results in a reduction (or no change), and reducing step rate results in an increase (or no change), to kinetic, kinematic, and loading rate variables at the ankle, knee and hip. At present there is insufficient evidence to conclusively determine the effects of altering running step rate on injury and performance. As most studies included in this review investigated the immediate effects of changing running step rate, the longer-term effects remain largely unknown. Prospero Registration CRD42020167657.
Collapse
|
10
|
Application of Leg, Vertical, and Joint Stiffness in Running Performance: A Literature Overview. Appl Bionics Biomech 2021; 2021:9914278. [PMID: 34721664 PMCID: PMC8553457 DOI: 10.1155/2021/9914278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
Stiffness, the resistance to deformation due to force, has been used to model the way in which the lower body responds to landing during cyclic motions such as running and jumping. Vertical, leg, and joint stiffness provide a useful model for investigating the store and release of potential elastic energy via the musculotendinous unit in the stretch-shortening cycle and may provide insight into sport performance. This review is aimed at assessing the effect of vertical, leg, and joint stiffness on running performance as such an investigation may provide greater insight into performance during this common form of locomotion. PubMed and SPORTDiscus databases were searched resulting in 92 publications on vertical, leg, and joint stiffness and running performance. Vertical stiffness increases with running velocity and stride frequency. Higher vertical stiffness differentiated elite runners from lower-performing athletes and was also associated with a lower oxygen cost. In contrast, leg stiffness remains relatively constant with increasing velocity and is not strongly related to the aerobic demand and fatigue. Hip and knee joint stiffness are reported to increase with velocity, and a lower ankle and higher knee joint stiffness are linked to a lower oxygen cost of running; however, no relationship with performance has yet been investigated. Theoretically, there is a desired “leg-spring” stiffness value at which potential elastic energy return is maximised and this is specific to the individual. It appears that higher “leg-spring” stiffness is desirable for running performance; however, more research is needed to investigate the relationship of all three lower limb joint springs as the hip joint is often neglected. There is still no clear answer how training could affect mechanical stiffness during running. Studies including muscle activation and separate analyses of local tissues (tendons) are needed to investigate mechanical stiffness as a global variable associated with sports performance.
Collapse
|
11
|
Jaén-Carrillo D, García-Pinillos F, Latella C, Moore SR, Cartón-Llorente A, Roche-Seruendo LE. Influence of footwear, foot-strike pattern and step frequency on spatiotemporal parameters and lower-body stiffness in running. J Sports Sci 2021; 40:299-309. [PMID: 34668839 DOI: 10.1080/02640414.2021.1992884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to determine the influence of footwear condition, foot-strike pattern and step frequency on running spatiotemporal parameters and lower-body stiffness during treadmill running. Thirty-one amateur endurance runners performed a two-session protocol (shod and barefoot). Each session consisted of two trials at 12 km · h-1 over 5 minutes altering step frequency every minute (150, 160, 170, 180 and 190 spm). First, participants were instructed to land with the heel first; after completion, the same protocol was repeated landing with the forefoot first. Repeated measures ANOVAs showed significant differences for footwear condition, foot-strike pattern and step frequency for each variable: percent contact time, percent flight time, vertical stiffness and leg stiffness (all p < 0.001). The results demonstrate greater estimated vertical and leg stiffness when running barefoot for both foot-strike patterns showing the largest values for barefoot+forefoot condition. Likewise, both vertical and leg stiffness became greater as step frequency increased. The proper manipulation of these variables facilitates our understanding of running performance and assist in training programmes design and injury management.
Collapse
Affiliation(s)
- Diego Jaén-Carrillo
- Campus Universitario, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Felipe García-Pinillos
- Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile.,Department of Physical Education and Sport, University of Granada, Granada, Spain
| | - Christopher Latella
- Neurophysiology Research Laboratory, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Stephanie R Moore
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | | | | |
Collapse
|
12
|
Lin JZ, Chiu WY, Tai WH, Hong YX, Chen CY. Ankle Muscle Activations during Different Foot-Strike Patterns in Running. SENSORS 2021; 21:s21103422. [PMID: 34069061 PMCID: PMC8156102 DOI: 10.3390/s21103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
This study analysed the landing performance and muscle activity of athletes in forefoot strike (FFS) and rearfoot strike (RFS) patterns. Ten male college participants were asked to perform two foot strikes patterns, each at a running speed of 6 km/h. Three inertial sensors and five EMG sensors as well as one 24 G accelerometer were synchronised to acquire joint kinematics parameters as well as muscle activation, respectively. In both the FFS and RFS patterns, according to the intraclass correlation coefficient, excellent reliability was found for landing performance and muscle activation. Paired t tests indicated significantly higher ankle plantar flexion in the FFS pattern. Moreover, biceps femoris (BF) and gastrocnemius medialis (GM) activation increased in the pre-stance phase of the FFS compared with that of RFS. The FFS pattern had significantly decreased tibialis anterior (TA) muscle activity compared with the RFS pattern during the pre-stance phase. The results demonstrated that the ankle strategy focused on controlling the foot strike pattern. The influence of the FFS pattern on muscle activity likely indicates that an athlete can increase both BF and GM muscles activity. Altered landing strategy in cases of FFS pattern may contribute both to the running efficiency and muscle activation of the lower extremity. Therefore, neuromuscular training and education are required to enable activation in dynamic running tasks.
Collapse
Affiliation(s)
- Jian-Zhi Lin
- Department of Physical Education, National Taiwan University of Sport, Taichung 40404, Taiwan; (J.-Z.L.); (Y.-X.H.)
| | - Wen-Yu Chiu
- Department of Physical Education, National Taiwan University of Sport, Taichung 40404, Taiwan; (J.-Z.L.); (Y.-X.H.)
- Correspondence: (W.-Y.C.); (C.-Y.C.)
| | - Wei-Hsun Tai
- School of Physical Education, Quanzhou Normal University, Quanzhou 362000, China;
| | - Yu-Xiang Hong
- Department of Physical Education, National Taiwan University of Sport, Taichung 40404, Taiwan; (J.-Z.L.); (Y.-X.H.)
| | - Chung-Yu Chen
- Department of Physical Education, National Taiwan University of Sport, Taichung 40404, Taiwan; (J.-Z.L.); (Y.-X.H.)
- Correspondence: (W.-Y.C.); (C.-Y.C.)
| |
Collapse
|
13
|
What are the Benefits and Risks Associated with Changing Foot Strike Pattern During Running? A Systematic Review and Meta-analysis of Injury, Running Economy, and Biomechanics. Sports Med 2021; 50:885-917. [PMID: 31823338 DOI: 10.1007/s40279-019-01238-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Running participation continues to increase. The ideal strike pattern during running is a controversial topic. Many coaches and therapists promote non-rearfoot strike (NRFS) running with a belief that it can treat and prevent injury, and improve running economy. OBJECTIVE The aims of this review were to synthesise the evidence comparing NRFS with rearfoot strike (RFS) running patterns in relation to injury and running economy (primary aim), and biomechanics (secondary aim). DESIGN Systematic review and meta-analysis. Consideration was given to within participant, between participant, retrospective, and prospective study designs. DATA SOURCES MEDLINE, EMBASE, CINAHL, and SPORTDiscus. RESULTS Fifty-three studies were included. Limited evidence indicated that NRFS running is retrospectively associated with lower reported rates of mild (standard mean difference (SMD), 95% CI 3.25, 2.37-4.12), moderate (3.65, 2.71-4.59) and severe (0.93, 0.32-1.55) repetitive stress injury. Studies prospectively comparing injury risk between strike patterns are lacking. Limited evidence indicated that running economy did not differ between habitual RFS and habitual NRFS runners at slow (10.8-11.0 km/h), moderate (12.6-13.5 km/h), and fast (14.0-15.0 km/h) speeds, and was reduced in the immediate term when an NRFS-running pattern was imposed on habitual RFS runners at slow (10.8 km/h; SMD = - 1.67, - 2.82 to - 0.52) and moderate (12.6 km/h; - 1.26, - 2.42 to - 0.10) speeds. Key biomechanical findings, consistently including both comparison between habitual strike patterns and following immediate transition from RFS to NRFS running, indicated that NRFS running was associated with lower average and peak vertical loading rate (limited-moderate evidence; SMDs = 0.72-2.15); lower knee flexion range of motion (moderate-strong evidence; SMDs = 0.76-0.88); reduced patellofemoral joint stress (limited evidence; SMDs = 0.63-0.68); and greater peak internal ankle plantar flexor moment (limited evidence; SMDs = 0.73-1.33). CONCLUSION The relationship between strike pattern and injury risk could not be determined, as current evidence is limited to retrospective findings. Considering the lack of evidence to support any improvements in running economy, combined with the associated shift in loading profile (i.e., greater ankle and plantarflexor loading) found in this review, changing strike pattern cannot be recommended for an uninjured RFS runner. PROSPERO REGISTRATION CRD42015024523.
Collapse
|
14
|
Jaén-Carrillo D, Roche-Seruendo LE, Felton L, Cartón-Llorente A, García-Pinillos F. Stiffness in Running: A Narrative Integrative Review. Strength Cond J 2021. [DOI: 10.1519/ssc.0000000000000593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Xu Y, Yuan P, Wang R, Wang D, Liu J, Zhou H. Effects of Foot Strike Techniques on Running Biomechanics: A Systematic Review and Meta-analysis. Sports Health 2020; 13:71-77. [PMID: 32813597 DOI: 10.1177/1941738120934715] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
CONTENT Distance running is one of the most popular physical activities, and running-related injuries (RRIs) are also common. Foot strike patterns have been suggested to affect biomechanical variables related to RRI risks. OBJECTIVE To determine the effects of foot strike techniques on running biomechanics. DATA SOURCES The databases of Web of Science, PubMed, EMBASE, and EBSCO were searched from database inception through November 2018. STUDY SELECTION The initial electronic search found 723 studies. Of these, 26 studies with a total of 472 participants were eligible for inclusion in this meta-analysis. STUDY DESIGN Systematic review and meta-analysis. LEVEL OF EVIDENCE Level 4. DATA EXTRACTION Means, standard deviations, and sample sizes were extracted from the eligible studies, and the standard mean differences (SMDs) were obtained for biomechanical variables between forefoot strike (FFS) and rearfoot strike (RFS) groups using a random-effects model. RESULTS FFS showed significantly smaller magnitude (SMD, -1.84; 95% CI, -2.29 to -1.38; P < 0.001) and loading rate (mean: SMD, -2.1; 95% CI, -3.18 to -1.01; P < 0.001; peak: SMD, -1.77; 95% CI, -2.21 to -1.33; P < 0.001) of impact force, ankle stiffness (SMD, -1.69; 95% CI, -2.46 to -0.92; P < 0.001), knee extension moment (SMD, -0.64; 95% CI, -0.98 to -0.3; P < 0.001), knee eccentric power (SMD, -2.03; 95% CI, -2.51 to -1.54; P < 0.001), knee negative work (SMD, -1.56; 95% CI, -2.11 to -1.00; P < 0.001), and patellofemoral joint stress (peak: SMD, -0.71; 95% CI, -1.28 to -0.14; P = 0.01; integral: SMD, -0.63; 95% CI, -1.11 to -0.15; P = 0.01) compared with RFS. However, FFS significantly increased ankle plantarflexion moment (SMD, 1.31; 95% CI, 0.66 to 1.96; P < 0.001), eccentric power (SMD, 1.63; 95% CI, 1.18 to 2.08;P < 0.001), negative work (SMD, 2.60; 95% CI, 1.02 to 4.18; P = 0.001), and axial contact force (SMD, 1.26; 95% CI, 0.93 to 1.6; P < 0.001) compared with RFS. CONCLUSION Running with RFS imposed higher biomechanical loads on overall ground impact and knee and patellofemoral joints, whereas FFS imposed higher biomechanical loads on the ankle joint and Achilles tendon. The modification of strike techniques may affect the specific biomechanical loads experienced on relevant structures or tissues during running.
Collapse
Affiliation(s)
- Yilin Xu
- Sports Biomechanics Laboratory, Jiangsu Research Institute of Sports Science, Nanjing, Jiangsu, China
| | - Peng Yuan
- Sports Biomechanics Laboratory, Jiangsu Research Institute of Sports Science, Nanjing, Jiangsu, China
| | - Ran Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Dan Wang
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Jia Liu
- Musculoskeletal Biomechanics Research Laboratory, Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Hui Zhou
- School of Automation, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Melaro JA, Gruber AH, Paquette MR. Joint work is not shifted proximally after a long run in rearfoot strike runners. J Sports Sci 2020; 39:78-83. [PMID: 32787647 DOI: 10.1080/02640414.2020.1804807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Distal-to-proximal redistribution of joint work occurs following exhaustive running in recreational but not competitive runners but the influence of a submaximal run on joint work is unknown. The purpose of this study was to assess if a long submaximal run produces a distal-to-proximal redistribution of positive joint work in well-trained runners. Thirteen rearfoot striking male runners (weekly distance: 72.6 ± 21.2 km) completed five running trials while three-dimensional kinematic and ground reaction force data were collected before and after a long submaximal treadmill run (19 ± 6 km). Joint kinetics were calculated from these data and percent contributions of joint work relative to total lower limb joint work were computed. Moderate reductions in absolute negative ankle work (p = 0.045, Cohen's d = 0.31), peak plantarflexor torque (p = 0.004, d = 0.34) and, peak negative ankle power (p = 0.005, d = 0.32) were observed following the long run. Positive ankle, knee and hip joint work were unchanged (p < 0.05) following the long run. These findings suggest no proximal shift in positive joint work in well-trained runners after a prolonged run. Runner population, running pace, distance, and relative intensity should be considered when examining changes in joint work following prolonged running.
Collapse
Affiliation(s)
- Jake A Melaro
- School of Health Studies, University of Memphis , Memphis, Tennessee, USA
| | - Allison H Gruber
- Department of Kinesiology, School of Public Health, Indiana University , Bloomington, Indiana, USA
| | - Max R Paquette
- School of Health Studies, University of Memphis , Memphis, Tennessee, USA
| |
Collapse
|
17
|
Moran MF, Wager JC. Influence of Gait Retraining on Running Economy: A Review and Potential Applications. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Ziliaskoudis C, Park SY, Lee SH. Running economy - a comprehensive review for passive force generation. J Exerc Rehabil 2019; 15:640-646. [PMID: 31723550 PMCID: PMC6834697 DOI: 10.12965/jer.1938406.203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022] Open
Abstract
Running economy is considered a major determinant of distance running performance. Enhancing the body's ability for passive force generation could have a positive effect on running economy by minimizing the energy cost required for the propulsion of the body. Thus, the purpose of this comprehensive review was to provide a list of modifiable factors that promote this ability. The interest was focused on lower-limb stiffness, as it is a factor of great influence and at the same time can be modified with training and specific biomechanical adjustments. Although it appears that no clear instructions can be provided to athletes and coaches, it should be noted that careful consideration of the runners' anthropometric, physiological, and biomechanical characteristics are necessary for optimal performance results.
Collapse
Affiliation(s)
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE, USA
| | - Sang-Ho Lee
- Department of Taekwondo Mission, Kosin University, Busan, Korea
| |
Collapse
|
19
|
Hanley B, Bissas A, Merlino S, Gruber AH. Most marathon runners at the 2017 IAAF World Championships were rearfoot strikers, and most did not change footstrike pattern. J Biomech 2019; 92:54-60. [DOI: 10.1016/j.jbiomech.2019.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|