1
|
Prakashan D, Singh A, Deshpande AD, Chandra V, Sharma GT, Gandhi S. Bone marrow derived mesenchymal stem cells enriched PCL-gelatin nanofiber scaffold for improved wound healing. Int J Biol Macromol 2024; 274:133447. [PMID: 38944073 DOI: 10.1016/j.ijbiomac.2024.133447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Electrospun nanofibers exhibit a significant potential in the synthesis of nanostructured materials, thereby offering a promising avenue for enhancing the efficacy of wound care. The present study aimed to investigate the wound-healing potential of two biomacromolecules, PCL-Gelatin nanofiber adhered with bone marrow-derived mesenchymal stem cells (BMSCs). Characterisation of the nanofiber revealed a mean fiber diameter ranging from 200 to 300 nm, with distinctive elemental peaks corresponding to polycaprolactone (PCL) and gelatin. Additionally, BMSCs derived from bone marrow were integrated into nanofibers, and their wound-regenerative potential was systematically evaluated through both in-vitro and in-vivo methodologies. In-vitro assessments substantiated that BMSC-incorporated nanofibers enhanced cell viability and crucial cellular processes such as adhesion, and proliferation. Subsequently, in-vivo studies were performed to demonstrate the wound-healing efficacy of nanofibers. It was observed that the rate of wound healing of BMSCs incorporated nanofibers surpassed both, nanofiber and BMSCs alone. Furthermore, histomorphological analysis revealed accelerated re-epithelization and improved wound contraction in BMSCs incorporated nanofiber group. The fabricated nanofiber incorporated with BMSCs exhibited superior wound regeneration in animal model and may be utilised as a wound healing patch.
Collapse
Affiliation(s)
- Drishya Prakashan
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad-500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad-121001, Haryana, India
| | - Archita Singh
- ICAR-Indian Veterinary Research Institute, Izatnagar-243122, U.P., India
| | - Aditya D Deshpande
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad-500032, Telangana, India; ICAR-Indian Veterinary Research Institute, Izatnagar-243122, U.P., India
| | - Vikash Chandra
- ICAR-Indian Veterinary Research Institute, Izatnagar-243122, U.P., India
| | - G Taru Sharma
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad-500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad-121001, Haryana, India.
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad-500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad-121001, Haryana, India.
| |
Collapse
|
2
|
Hu Y, Yu L, Dai Q, Hu X, Shen Y. Multifunctional antibacterial hydrogels for chronic wound management. Biomater Sci 2024; 12:2460-2479. [PMID: 38578143 DOI: 10.1039/d4bm00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Chronic wounds have gradually evolved into a global health challenge, comprising long-term non-healing wounds, local tissue necrosis, and even amputation in severe cases. Accordingly, chronic wounds place a considerable psychological and economic burden on patients and society. Chronic wounds have multifaceted pathogenesis involving excessive inflammation, insufficient angiogenesis, and elevated reactive oxygen species levels, with bacterial infection playing a crucial role. Hydrogels, renowned for their excellent biocompatibility, moisture retention, swelling properties, and oxygen permeability, have emerged as promising wound repair dressings. However, hydrogels with singular functions fall short of addressing the complex requirements associated with chronic wound healing. Hence, current research emphasises the development of multifunctional antibacterial hydrogels. This article reviews chronic wound characteristics and the properties and classification of antibacterial hydrogels, as well as their potential application in chronic wound management.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Lu Yu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Qiang Dai
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Xiaohua Hu
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| | - Yuming Shen
- Department of Burns Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Clinical Center for Wounds, Capital Medical University, Beijing, 100035, China
| |
Collapse
|
3
|
Ansari M, Darvishi A. A review of the current state of natural biomaterials in wound healing applications. Front Bioeng Biotechnol 2024; 12:1309541. [PMID: 38600945 PMCID: PMC11004490 DOI: 10.3389/fbioe.2024.1309541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Skin, the largest biological organ, consists of three main parts: the epidermis, dermis, and subcutaneous tissue. Wounds are abnormal wounds in various forms, such as lacerations, burns, chronic wounds, diabetic wounds, acute wounds, and fractures. The wound healing process is dynamic, complex, and lengthy in four stages involving cells, macrophages, and growth factors. Wound dressing refers to a substance that covers the surface of a wound to prevent infection and secondary damage. Biomaterials applied in wound management have advanced significantly. Natural biomaterials are increasingly used due to their advantages including biomimicry of ECM, convenient accessibility, and involvement in native wound healing. However, there are still limitations such as low mechanical properties and expensive extraction methods. Therefore, their combination with synthetic biomaterials and/or adding bioactive agents has become an option for researchers in this field. In the present study, the stages of natural wound healing and the effect of biomaterials on its direction, type, and level will be investigated. Then, different types of polysaccharides and proteins were selected as desirable natural biomaterials, polymers as synthetic biomaterials with variable and suitable properties, and bioactive agents as effective additives. In the following, the structure of selected biomaterials, their extraction and production methods, their participation in wound healing, and quality control techniques of biomaterials-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | |
Collapse
|
4
|
Xia S, Wang R, Bai X, Nie JJ, Chen D, Teng L, Yang L. The research status and prospects of nanomaterials in wound healing: A scientometric study. Medicine (Baltimore) 2024; 103:e37462. [PMID: 38489685 PMCID: PMC10939702 DOI: 10.1097/md.0000000000037462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024] Open
Abstract
Nanotechnology and nanomaterials have swiftly influenced wound healing, propelling the development of wound-healing nanomaterials. Therefore, it's crucial to gather essential information about prominent researches in this domain. Moreover, identifying primary directions and related frontiers in wound healing and nanomaterials is paramount. This will enhance our comprehension of the current research landscape and foster progress in this field. Retrieved from the Web of Science core database, a total of 838 relevant studies published from 2013 to 2022 were analyzed through bibliometric visualization tools such as CiteSpace, VOSviewer, and Bibliometrics Online Analysis Platform. The annual study count has been rising steadily, primary contributors to this field include China, India, and the United States. The author with the highest output is Zangeneh, Akram, while Grumezescu, Alexandru Mihai garners the most citations. Chinese Academy of Sciences emerges as the leading institution, with Nanomaterials as the predominant journal. The keyword "antibacterial" signals prevailing and forthcoming trends in this domain. This study presents the first scientometric study and bibliometric visualization for wound healing-related nanomaterials, shedding light on research hotspots and trends. Over the course of the decade from 2013 to 2022, enthusiasm for nanomaterials in wound healing research has surged, auguring well for upcoming investigations.
Collapse
Affiliation(s)
- Songxia Xia
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- JST sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xueshan Bai
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Li Teng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liya Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics (Basel) 2023; 13:diagnostics13050916. [PMID: 36900059 PMCID: PMC10001196 DOI: 10.3390/diagnostics13050916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick access to health monitoring without the use of complex instruments. Wearable sensors are gaining popularity owing to their ability to offer regular and continuous monitoring of physiological data by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial fluid and saliva. Current advancements have concentrated on the development of optical and electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers such as metabolites, hormones and microbes. For enhanced wearability and ease of operation, microfluidic sampling, multiple sensing, and portable systems have been incorporated with materials that are flexible. Although wearable sensors show promise and improved dependability, they still require more knowledge about interaction between the target sample concentrations in blood and non-invasive biofluids. In this review, we have described the importance of wearable sensors for POCT, their design and types of these devices. Following which, we emphasize on the current breakthroughs in the application of wearable sensors in the realm of wearable integrated POCT devices. Lastly, we discuss the present obstacles and forthcoming potentials including the use of Internet of Things (IoT) for offering self-healthcare using wearable POCT.
Collapse
|
6
|
Bhardwaj H, Khute S, Sahu R, Jangde RK. Advanced Drug Delivery System for Management of Chronic Diabetes Wound Healing. Curr Drug Targets 2023; 24:1239-1259. [PMID: 37957907 DOI: 10.2174/0113894501260002231101080505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 11/15/2023]
Abstract
The diabetic wound is excessively vulnerable to infection because the diabetic wound suggests delayed and incomplete healing techniques. Presently, wounds and ulcers related to diabetes have additionally increased the medical burden. A diabetic wound can impair mobility, lead to amputations, or even death. In recent times, advanced drug delivery systems have emerged as promising approaches for enhancing the efficacy of wound healing treatments in diabetic patients. This review aims to provide an overview of the current advancements in drug delivery systems in managing chronic diabetic wound healing. This review begins by discussing the pathophysiological features of diabetic wounds, including impaired angiogenesis, elevated reactive oxygen species, and compromised immune response. These factors contribute to delayed wound healing and increased susceptibility to infection. The importance of early intervention and effective wound management strategies is emphasized. Various types of advanced drug delivery systems are then explored, including nanoparticles, hydrogels, transferosomes, liposomes, niosomes, dendrimers, and nanosuspension with incorporated bioactive agents and biological macromolecules are also utilized for chronic diabetes wound management. These systems offer advantages such as sustained release of therapeutic agents, improved targeting and penetration, and enhanced wound closure. Additionally, the review highlights the potential of novel approaches such as antibiotics, minerals, vitamins, growth factors gene therapy, and stem cell-based therapy in diabetic wound healing. The outcome of advanced drug delivery systems holds immense potential in managing chronic diabetic wound healing. They offer innovative approaches for delivering therapeutic agents, improving wound closure, and addressing the specific pathophysiological characteristics of diabetic wounds.
Collapse
Affiliation(s)
- Harish Bhardwaj
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Sulekha Khute
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| | - Ram Sahu
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Rajendra Kumar Jangde
- Department of Pharmacy, University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, C.G, India
| |
Collapse
|