1
|
Glushakova A, Tepeeva A, Prokof'eva T, Kachalkin A. Culturable yeast diversity in urban topsoil influenced by various anthropogenic impacts. Int Microbiol 2024; 27:1383-1403. [PMID: 38263536 DOI: 10.1007/s10123-024-00482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
In urban ecosystems, processes associated with anthropogenic influences almost always lead to changes in soil micromycete complexes. The taxonomic structure of soil micromycete complexes is an important informative parameter of soil bioindication in the ecological control of urban environments. Unicellular fungi, such as culturable yeasts, are a very suitable and promising object of microbiological research for monitoring urban topsoil. This review aims to give an overview of the yeast communities in urban topsoil in different areas of Moscow (heating main area, household waste storage and disposal area, highway area) and to discuss the changes in the taxonomic structure of culturable yeast complexes depending on the type and intensity of anthropogenic impact.
Collapse
Affiliation(s)
- Anna Glushakova
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia.
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow, 105064, Russia.
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia.
| | - Aleksandra Tepeeva
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| | - Tatiana Prokof'eva
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Aleksey Kachalkin
- Soil Science Faculty, Lomonosov Moscow State University, 119991, Moscow, Russia
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of RAS, Pushchino, 142290, Russia
| |
Collapse
|
2
|
Wong MH, Minkina T, Vasilchenko N, Sushkova S, Delegan Y, Ranjan A, Saxena P, Tarigholizadeh S, Dudnikova T, Barbashev A, Maksimov A, Faenson A, Kızılkaya R. Assessment of antibiotic resistance genes in soils polluted by chemical and technogenic ways with poly-aromatic hydrocarbons and heavy metals. ENVIRONMENTAL RESEARCH 2024; 252:118949. [PMID: 38631472 DOI: 10.1016/j.envres.2024.118949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/18/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Anthropogenic activities are leaving lots of chemical footprints on the soil. It alters the physiochemical characteristics of the soil thereby modifying the natural soil microbiome. The prevalence of antimicrobial-resistance microbes in polluted soil has gained attention due to its obvious public health risks. This study focused on assessing the prevalence and distribution of antibiotic-resistance genes in polluted soil ecosystems impacted by industrial enterprises in southern Russia. Metagenomic analysis was conducted on soil samples collected from polluted sites using various approaches, and the prevalence of antibiotic-resistance genes was investigated. The results revealed that efflux-encoding pump sequences were the most widely represented group of genes, while genes whose products replaced antibiotic targets were less represented. The level of soil contamination increased, and there was an increase in the total number of antibiotic-resistance genes in proteobacteria, but a decrease in actinobacteria. The study proposed an optimal mechanism for processing metagenomic data in polluted soil ecosystems, which involves mapping raw reads by the KMA method, followed by a detailed study of specific genes. The study's conclusions provide valuable insights into the prevalence and distribution of antibiotic-resistance genes in polluted soils and have been illustrated in heat maps.
Collapse
Affiliation(s)
- Ming Hung Wong
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; Consortium on Health, Environment, Education, and Research (CHEER), The Educaiton University of Hong Kong, Tai Po, Hong Kong, China
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Nikita Vasilchenko
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; Almetyevsk State Oil Institute, 423450 Almetyevsk, Republic of Tatarstan, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Yanina Delegan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia; G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 5 Prosp. Nauki, Pushchino, 142290 Moscow, Russia
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia.
| | - Pallavi Saxena
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Sarieh Tarigholizadeh
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Tamara Dudnikova
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Andrey Barbashev
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Aleksey Maksimov
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia
| | - Alexandr Faenson
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia
| | | |
Collapse
|