1
|
Parak M, Asgari A, Hasani Nourian Y, Ghanei M. A review of poisoning with various types of biotoxins and its common clinical symptoms. Toxicon 2024; 240:107629. [PMID: 38336277 DOI: 10.1016/j.toxicon.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/01/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION Biotoxins are toxic substances that originate from living organisms and are harmful to humans. Therefore, we need to know the symptoms of biotoxins poisoning to manage the damage. The purpose of this study is to establish a practical diagnostic protocol for dealing with poisoned patients exposed to biotoxins. MATERIALS AND METHODS The present study is a review study. Our studied community is articles and books matching the title of the project and relevant keywords. First, by searching the key words sign, symptom, biotoxins, relevant articles were extracted and studied from valid databases. By reviewing the studies based on the search strategy, four groups of biotoxins that were studied the most were identified. These four groups are marine biotoxins, bacterial biotoxins, fungal biotoxins and plant biotoxins. In each of these biotoxin groups, important toxins were selected and studied. RESULTS A total of 1864 articles were initially identified from the databases searched in present study. After screening titles and abstracts, 26 articles were included in the systematic review. Specifically, 7 articles were included for bacterial toxins, 9 articles for marine toxins, 5 articles for plant toxins and 5 articles for fungal toxins. CONCLUSION The symptoms of plant biotoxins poisoning may include cardiovascular, hematologic, neurologic, respiratory, renal, and gastrointestinal symptoms, while the symptoms of fungal biotoxins poisoning may include hepatic, renal, gastrointestinal, musculoskeletal, metabolic, respiratory, neurological, and cardiovascular symptoms. marine biotoxins poisoning presents with gastrointestinal and neurological symptoms, with varying incubation periods and recovery times. bacterial biotoxins exposure can lead to a wide range of clinical symptoms, with diarrhea, vomiting, and abdominal pain being the most common, and hemoglobinuria or hematuria being a sensitive and specific clinical manifestation for diagnosing ongoing HUS in children.
Collapse
Affiliation(s)
- Mohammadreza Parak
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Asgari
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Malissiova E, Soultani G, Kogia P, Koureas M, Hadjichristodoulou C. Analysis of 20 year data for the assessment of dietary exposure to chemical contaminants in the region of Thessaly, Greece. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Review of Harmful Algal Blooms in the Coastal Mediterranean Sea, with a Focus on Greek Waters. DIVERSITY 2021. [DOI: 10.3390/d13080396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Anthropogenic marine eutrophication has been recognized as one of the major threats to aquatic ecosystem health. In recent years, eutrophication phenomena, prompted by global warming and population increase, have stimulated the proliferation of potentially harmful algal taxa resulting in the prevalence of frequent and intense harmful algal blooms (HABs) in coastal areas. Numerous coastal areas of the Mediterranean Sea (MS) are under environmental pressures arising from human activities that are driving ecosystem degradation and resulting in the increase of the supply of nutrient inputs. In this review, we aim to present the recent situation regarding the appearance of HABs in Mediterranean coastal areas linked to anthropogenic eutrophication, to highlight the features and particularities of the MS, and to summarize the harmful phytoplankton outbreaks along the length of coastal areas of many localities. Furthermore, we focus on HABs documented in Greek coastal areas according to the causative algal species, the period of occurrence, and the induced damage in human and ecosystem health. The occurrence of eutrophication-induced HAB incidents during the past two decades is emphasized.
Collapse
|
4
|
Mafra LL, Nolli PKW, Mota LE, Domit C, Soeth M, Luz LFG, Sobrinho BF, Leal JG, Di Domenico M. Multi-species okadaic acid contamination and human poisoning during a massive bloom of Dinophysis acuminata complex in southern Brazil. HARMFUL ALGAE 2019; 89:101662. [PMID: 31672229 DOI: 10.1016/j.hal.2019.101662] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
On June 2016, a major bloom of Dinophysis acuminata complex was noticed over the coast of Paraná State (PR), southern Brazil, an area unprotected by any official monitoring program. Here we report the results of an extensive sampling effort that ultimately led PR authorities to issue the first State shellfish-harvesting ban due to multi-species okadaic acid (OA) contamination. During its peak, the bloom covered an area of 201 km2 (∼2.0-3.5 × 54.0 km), attaining unprecedentedly high cell densities along the shallow (<15 m) continental shelf (mean 2.2 × 105, maximum 2.1 × 106 cells L-1) and adjacent sandy beaches (mean 2.8 × 105, maximum 5.2 × 106 cells L-1). Only OA was detected in suspension (max. 188 ng L-1). Toxin levels measured in bivalves were several times greater than the regulatory limit of 160 ng g-1, reaching up to 3600 ng g-1 in Crassostrea gasar, by far the highest OA concentrations ever reported in oysters worldwide, 7700 ng g-1 in brown mussels, Perna perna, and lower levels in clams, Anomalocardia brasiliana, and mangrove mussels, Mytella spp. Nine cases of human intoxication were officially reported and five people were hospitalized with typical symptoms of Diarrhetic Shellfish Poisoning linked to the consumption of contaminated bivalves. All bivalves quickly converted most of the OA into its esterified form, DTX-3, and eliminated the toxins only a few weeks following the bloom, with C. gasar being the slowest-detoxifying species. Lower OA levels were accumulated in zooplankton, gastropods and several novel toxin vectors, including benthic organisms such as sand dollars Mellita quinquiesperforata and the ghost-shrimp Callichirus major, which may act as a good indicator of the presence of toxins in sandy beaches, and pelagic fish species that can serve as potential alternative sources of OA to humans (Chaetodipterus faber and Mugil liza). Monitoring toxin contamination in seafood other than bivalves is thus recommended to ensure comprehensive human health protection during massive Dinophysis blooms. Additionally, since OA was also present at low concentrations in the liver of Guiana dolphins Sotalia guianensis and penguins Spheniscus magellanicus, exposure to biotoxins should be considered in conservation actions involving threatened and near-threatened marine organisms in this region.
Collapse
Affiliation(s)
- L L Mafra
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil.
| | - P K W Nolli
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - L E Mota
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - C Domit
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - M Soeth
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - L F G Luz
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - B F Sobrinho
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - J G Leal
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| | - M Di Domenico
- Centro de Estudos do Mar, Universidade Federal do Paraná. P.O. Box 61. Pontal do Paraná, PR, 83255-976, Brazil
| |
Collapse
|
5
|
Farrell H, Ajani P, Murray S, Baker P, Webster G, Brett S, Zammit A. Diarrhetic Shellfish Toxin Monitoring in Commercial Wild Harvest Bivalve Shellfish in New South Wales, Australia. Toxins (Basel) 2018; 10:E446. [PMID: 30380778 PMCID: PMC6266617 DOI: 10.3390/toxins10110446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 11/25/2022] Open
Abstract
An end-product market survey on biotoxins in commercial wild harvest shellfish (Plebidonax deltoides, Katelysia spp., Anadara granosa, Notocallista kingii) during three harvest seasons (2015⁻2017) from the coast of New South Wales, Australia found 99.38% of samples were within regulatory limits. Diarrhetic shellfish toxins (DSTs) were present in 34.27% of 321 samples but only in pipis (P. deltoides), with two samples above the regulatory limit. Comparison of these market survey data to samples (phytoplankton in water and biotoxins in shellfish tissue) collected during the same period at wild harvest beaches demonstrated that, while elevated concentrations of Dinophysis were detected, a lag in detecting bloom events on two occasions meant that wild harvest shellfish with DSTs above the regulatory limit entered the marketplace. Concurrently, data (phytoplankton and biotoxin) from Sydney rock oyster (Saccostrea glomerata) harvest areas in estuaries adjacent to wild harvest beaches impacted by DSTs frequently showed elevated Dinophysis concentrations, but DSTs were not detected in oyster samples. These results highlighted a need for distinct management strategies for different shellfish species, particularly during Dinophysis bloom events. DSTs above the regulatory limit in pipis sampled from the marketplace suggested there is merit in looking at options to strengthen the current wild harvest biotoxin management strategies.
Collapse
Affiliation(s)
- Hazel Farrell
- NSW Food Authority, 6 Avenue of the Americas, Newington, NSW 2127, Australia.
| | - Penelope Ajani
- Climate Change Cluster (C3), University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Shauna Murray
- Climate Change Cluster (C3), University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Phil Baker
- NSW Food Authority, 6 Avenue of the Americas, Newington, NSW 2127, Australia.
| | - Grant Webster
- NSW Food Authority, 6 Avenue of the Americas, Newington, NSW 2127, Australia.
| | - Steve Brett
- Microalgal Services, 308 Tucker Rd, Ormond, VIC 3204, Australia.
| | - Anthony Zammit
- NSW Food Authority, 6 Avenue of the Americas, Newington, NSW 2127, Australia.
| |
Collapse
|
6
|
Detection of Dinophysis Species and Associated Okadaic Acid in Farmed Shellfish: a Two-year Study from The Western Mediterranean Area. J Vet Res 2018; 62:137-144. [PMID: 30364879 PMCID: PMC6200286 DOI: 10.2478/jvetres-2018-0022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/14/2018] [Indexed: 01/27/2023] Open
Abstract
Introduction Diarrhoetic shellfish poisoning (DSP), an alimentary intoxication known to lead to intestinal symptoms, and caused by toxins produced by some dinoflagellates (including several Dinophysis), represents a serious threat to public health. The aim of this paper was to provide information about the occurrence and abundance of potentially toxic harmful algal species causing DSP, and the associated concentration of okadaic acid (OA) toxins. The departing assumption was that in the study area there was an increase in the presence both of Dinophysis species and OA and its derivates that could result in a risk to the health of seafood consumers. Material and Methods During 2015-2016, water and shellfish samples were collected in the Mediterranean area (Sardinia, Italy). Dinophysis cells were counted according to Utermöhl's method from water samples, while mass spectrometry was used to identify lipophilic toxins in molluscs. Results A total of 46 non-compliant samples of Mytilus galloprovincialis were observed. Their non-compliance concerned their OA levels above the legal limit. Among toxic dinoflagellates, D. acuminata and D. sacculus were the species found mostly during DSP events. Conclusion No cases of human intoxication have been reported, but continuous surveillance of toxic phytoplankton is necessary to predict and prevent its harmful effects on human health.
Collapse
|
7
|
Nicolas J, Hoogenboom RL, Hendriksen PJ, Bodero M, Bovee TF, Rietjens IM, Gerssen A. Marine biotoxins and associated outbreaks following seafood consumption: Prevention and surveillance in the 21st century. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2017. [DOI: 10.1016/j.gfs.2017.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Bazzoni AM, Mudadu AG, Lorenzoni G, Arras I, Lugliè A, Vivaldi B, Cicotelli V, Sanna G, Tedde G, Ledda S, Alesso E, Marongiu E, Virgilio S. Occurrence of Harmful Algal Species and Shellfish Toxicity in Sardinia (Italy). Ital J Food Saf 2016; 5:6095. [PMID: 28058244 PMCID: PMC5178840 DOI: 10.4081/ijfs.2016.6095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 11/23/2022] Open
Abstract
Sardinia (Italy, north-western Mediterranean) is a commercially important producer of edible bivalve molluscs. Since the early 2000s, it was subjected to recurring cases of mussel farm closures due to toxic algal poison. Here, we present the studies on toxin concentrations and the associated potentially toxic phytoplankton distribution and abundances carried out by a regular monitoring programme in Sardinian shellfish areas, from January to May 2015. Diarrheic shellfish poisoning (DSP) toxins were detected in several bivalve molluscs samples, while paralytic shellfish poisoning (PSP) and paralytic shellfish poisoning toxins were present just once, without exceeding the legal limits. Potentially toxic algal species have been constantly present. Pseudo-nitzschia species were present during the entire study often with high abundances, while Dinophysis species reached high densities sporadically. Among PSP phytoplankton, only Alexandrium minutum Halim was found. The data obtained in this study showed an increase in the DSP toxicity in mussels in Sardinia. No clear relation between the occurrence of toxins in shellfish and the presence of potentially toxic algal species was found, although a slight correlation between DSP toxins and Dinophysis species could be supported.
Collapse
Affiliation(s)
| | | | | | - Igor Arras
- Institute for Experimental Veterinary Medicine of Sardinia , Sassari
| | | | - Barbara Vivaldi
- Institute for Experimental Veterinary Medicine of Piedmont, Liguria and Valle D'Aosta , Genoa, Italy
| | - Valentina Cicotelli
- Institute for Experimental Veterinary Medicine of Piedmont, Liguria and Valle D'Aosta , Genoa, Italy
| | - Giovanna Sanna
- Institute for Experimental Veterinary Medicine of Sardinia , Sassari
| | - Giuseppe Tedde
- Institute for Experimental Veterinary Medicine of Sardinia , Sassari
| | - Salvatore Ledda
- Institute for Experimental Veterinary Medicine of Sardinia , Sassari
| | - Enrico Alesso
- Institute for Experimental Veterinary Medicine of Piedmont, Liguria and Valle D'Aosta , Genoa, Italy
| | - Edoardo Marongiu
- Institute for Experimental Veterinary Medicine of Sardinia , Sassari
| | | |
Collapse
|
9
|
Bazzoni AM, Caddeo T, Pulina S, Padedda BM, Satta CT, Sechi N, Lugliè A. Spatial distribution and multiannual trends of potentially toxic microalgae in shellfish farms along the Sardinian coast (NW Mediterranean Sea). ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:86. [PMID: 25655125 DOI: 10.1007/s10661-014-4250-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
In this study, the geographical distribution and multiannual trends of potentially toxic harmful algal species (HAS) were analysed at 18 mussel farms in Sardinia (Italy, North-Western Mediterranean Sea) using data derived from the Sardinian Regional Monitoring Programme (1988-2012). The results showed an increasing number of potentially toxic microalgae over the study period. Alexandrium catenella and Alexandrium minutum were the most harmful species detected. From 2002 to 2009, these species caused eight paralytic shellfish poisoning-positive events which temporarily stopped commercial trade of mussels. The statistical analysis indicated that some taxa exhibited temporal increasing trends in their abundance (e.g. Pseudo-nitzschia spp.), significant decrements (e.g. Dinophysis sp.), or both increasing and decreasing significant trends (e.g. A. minutum) at different sites, indicating the necessity of further in-depth studies, especially on certain taxa. Overall, the statistical elaboration of the long-term data provided useful signals for early detection of shellfish contamination by different potentially toxic HAS in defined sites. These signals can be used to develop best management practices.
Collapse
Affiliation(s)
- Anna Maria Bazzoni
- Department of Architecture, Planning and Design, University of Sassari, Via Piandanna 4, 07100, Sassari, Italy,
| | | | | | | | | | | | | |
Collapse
|
10
|
Li A, Sun G, Qiu J, Fan L. Lipophilic shellfish toxins in Dinophysis caudata picked cells and in shellfish from the East China Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3116-3126. [PMID: 25233922 DOI: 10.1007/s11356-014-3595-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
We reported previously that okadaic acid (OA) and dinophysistoxin-1 (DTX1) were responsible for diarrhetic shellfish poisoning (DSP) incidents due to consuming cultivated mussels (Mytilus galloprovincialis) in coastal cities near the East China Sea in May 2011. Pectenotoxin-2 (PTX2) and its seco acids were also present in these mussels. Causative species of microalgae were not identified because detailed information on the location of the contaminated shellfish was not recorded. In order to explore potential causes for these poisoning events, the lipophilic toxin profiles in picked cells of Dinophysis and in shellfish samples collected from two mariculture zones in the East China Sea were analyzed in the present study. Single-cell isolates (100 cells total for each location) of Dinophysis were collected from the aquaculture zones of Gouqi Island (Ningbo City, Zhejiang Province) and Qingchuan Bay (Ningde City, Fujian Province) in July and September 2013, respectively, for lipophilic toxin profiling. Shellfish samples collected over the course of a year from the Gouqi Island aquaculture zone and mussels (M. galloprovincialis) collected four times from the Qingchuan Bay aquaculture zone were tested for lipophilic toxins by LC-MS/MS. The Dinophysis cells isolated from both sampling sites were identified under the light microscope as Dinophysis caudata. Average quota of PTX2, the predominant toxin in D. caudata isolated from the coastal waters of Gouqi Island and Qingchuan Bay, was 0.58 and 2.8 pg/cell, respectively. Only trace amounts of OA and DTX1 were detected in D. caudata. PTX2, PTX2sa, 7-epi-PTX2sa, OA, and/or DTX1 were found in samples of mussels (M. galloprovincialis and Mytilus coruscus) collected in the Gouqi Island aquaculture zone from the end of May to the beginning of July 2013. PTX2, PTX2sa, and 7-epi-PTX2sa were also detected in oyster (Crassostrea gigas) during that period, but almost no OA and DTX1 were present. Gymnodimine (GYM) was detected in almost all mussel (M. coruscus) samples, with the highest levels occurring in winter. Trace amounts of pectenotoxins (PTXs) and OAs were also found in mussels (M. galloprovincialis) collected from Qingchuan Bay. D. caudata is suggested as an important source of PTXs in shellfish cultivated in the East China Sea. This is the first report of toxin profiles for single-cell isolates of Dinophysis in the East China Sea.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China,
| | | | | | | |
Collapse
|
11
|
Karydis M, Kitsiou D. Eutrophication and environmental policy in the Mediterranean Sea: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:4931-4984. [PMID: 21956336 DOI: 10.1007/s10661-011-2313-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 08/24/2011] [Indexed: 05/31/2023]
Abstract
The Mediterranean Sea is a semienclosed basin connected with the open sea mainly through the Strait of Gibraltar. Due to the circulation pattern and the long residence time ranging between 80 and 100 years, the Mediterranean Sea is a sensitive environment to eutrophication pressures. The main body of water of the Mediterranean is characterized by very low nutrient concentrations, and therefore, the Mediterranean is classified among the most oligotrophic (very poor waters in nutrients) seas of the world's oceans. However, some coastal areas, mainly in the northern part of the basin, receive excessive loads of nutrients from sewage effluents, river fluxes, aquaculture farms, fertilizers, and industrial facilities, showing intense eutrophic phenomena with many adverse effects for the marine ecosystem and humans. Various national and international authorities, in addition to monitoring, have taken legal and administrative measures to mitigate eutrophication trends in the area. The Mediterranean environment is a good paradigm of integration of extensive legal framework, scientific knowledge, and administrative practices. The Barcelona Convention, the Mediterranean Action Plan, and European Union Directives on water quality and coastal management, together with scientific information derived from international research programs in the Mediterranean, provide a sound background for practical actions in eutrophication problems. In the present work, the problem of coastal eutrophication in the Mediterranean is reviewed in connection with public policies of the Mediterranean States based on national and international legislation and scientific knowledge on Mediterranean oceanography-ecology and actions coordinated by international bodies. These common actions and practices on coastal management are also discussed in relation to the need for sustainable development and protection of the coastal zone in the Mediterranean Sea.
Collapse
Affiliation(s)
- Michael Karydis
- Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Lesvos Island 81100, Greece.
| | | |
Collapse
|
12
|
Grigorakis K, Rigos G. Aquaculture effects on environmental and public welfare - the case of Mediterranean mariculture. CHEMOSPHERE 2011; 85:899-919. [PMID: 21821276 DOI: 10.1016/j.chemosphere.2011.07.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 05/08/2023]
Abstract
Aquatic farming has been considered, during the last decades, as the fastest growing food production industry powered by governmental and technological impulsion. Compensation for fisheries decline, creation of new jobs and source of financial windfall are the most important benefits. However, similar to most of the human food-production activities, aquaculture raised several issues related to the environmental welfare and consumer safety. An effort to record the aquaculture-environment and -human safety interactions with regard to the Mediterranean mariculture, is attempted herein. We focused on this geographical area due to its individualities in both the hydrological and physicochemical characteristics and the forms of aquaculture activities. The cage farming of euryhaline marine fish species and more recently of bluefin tuna and mollusk farming are the dominating aquaculture activities. The impacts of these activities to the environment, through wastes offloads, introduction of alien species, genetic interactions, disease transfer, release of chemicals, use of wild recourses, alterations of coastal habitats and disturbance of wildlife, are analytically considered. Also the consumer safety issues related to the farming are assessed, including generation of antibiotic-resistant microorganisms, contaminants transferred to humans though food chain and other hazards from consumption of aquacultured items. Within these, the major literature findings are critically examined and suggestions for scientific areas that need further development are made. The major tasks for future aquaculture development in this region are: (i) to ensure sustainability and (ii) to balance the risks to public or environmental health with the substantial economical benefits. In regard with monitoring, tools must be created or adapted to predict the environmental costs and estimate consumer impact. At a canonistic and legal basis, the establishment of appropriate legal guidelines and common policies from all countries involved should be mandatory.
Collapse
Affiliation(s)
- K Grigorakis
- Laboratory of Fish Nutrition and Pathology, Institute of Aquaculture, Hellenic Centre for Marine Research (HCMR), Aghios Kosmas 16777, Athens, Greece
| | | |
Collapse
|