1
|
P S A, Thadathil DA, George L, Varghese A. Food Additives and Evolved Methods of Detection: A Review. Crit Rev Anal Chem 2024:1-20. [PMID: 39015954 DOI: 10.1080/10408347.2024.2372501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Food additives are essential constituents of food products in the modern world. The necessity of food processing went up rapidly as to meet requirements including, imparting desirable properties like preservation, enhancement and regulation of color and taste. The methods of identification and analysis of such substances are crucial. With the advancement of technology, a variety of techniques are emerging for this purpose which have many advantages over the existing conventional ways. This review is on different kinds of additives used in the food industry and few prominent methods for their determination ranging from conventional chromatographic techniques to the recently evolved nano-sensor techniques.
Collapse
Affiliation(s)
- Aiswarya P S
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | | | - Louis George
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
2
|
Hu J, Xian Y, Wu Y, Chen R, Dong H, Hou X, Liang M, Wang B, Wang L. Perchlorate occurrence in foodstuffs and water: Analytical methods and techniques for removal from water - A review. Food Chem 2021; 360:130146. [PMID: 34034057 DOI: 10.1016/j.foodchem.2021.130146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/15/2022]
Abstract
Perchlorate (ClO4-), a type of contaminant with high diffusivity and durability, has been widely detected in water and foodstuffs, arousing a global concern. It can interfere with normal function of the human thyroid gland, affecting human health. Therefore, determination of perchlorate in water and foodstuffs, and removal from water are important. This review focuses on the occurrence of perchlorate, mainly in water and foodstuffs, and provides an overview of analytical methods for determination of perchlorate over the last two decades. In addition, merits and drawbacks of the various methods have been considered. This review also highlights the most commonly used approaches for removal of perchlorate from water. Finally, current trends and future perspectives in determination of perchlorate and removal from water are proposed. This review provided a comprehensive understanding of perchlorate occurrence and its removal from water, and had practical significance in reducing the harm of perchlorate to human.
Collapse
Affiliation(s)
- Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Bin Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| |
Collapse
|
3
|
Abstract
Perchlorate ion (ClO4−) is known as a potent endocrine disruptor and exposure to this compound can result in serious health issues. It has been found in drinking water, swimming pools, and surface water in many countries, however, its occurrence in the environment is still poorly understood. The information on perchlorate contamination of Polish waters is very limited. The primary objective of this study was to assess ClO4− content in bottled, tap, river, and swimming pool water samples from different regions of Poland and provide some data on the presence of perchlorate. We have examined samples of bottled, river, municipal, and swimming pool water using the IC–CD (ion chromatography–conductivity detection) method. Limit of detection and limit of quantification were 0.43 µg/L and 1.42 µg/L, respectively, and they were both above the current health advisory levels in drinking water. The concentration of perchlorate were found to be 3.12 µg/L in one river water sample and from 6.38 to 8.14 µg/L in swimming pool water samples. Importantly, the level of perchlorate was below the limit of detection (LOD) in all bottled water samples. The results have shown that the determined perchlorate contamination in Polish drinking waters seems to be small, nevertheless, further studies are required on surface and river samples. The inexpensive, fast, and sensitive IC–CD method used in this study allowed for a reliable determination of perchlorate in the analyzed samples. To the best of our knowledge, there are no other studies seeking to assess the perchlorate content in Polish waters.
Collapse
|
4
|
Wang C, Chen H, Zhu L, Liu X, Lu C. Accurate, sensitive and rapid determination of perchlorate in tea by hydrophilic interaction chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3592-3599. [PMID: 32701081 DOI: 10.1039/d0ay00811g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Perchlorate is an environmental contaminant interrupting thyroid hormone production, and perchlorate in tea has raised wide concern recently. In this study, an accurate method was developed for the determination of perchlorate in tea using hydrophilic interaction chromatography-tandem mass spectrometry and a simplified QuEChERS procedure. The method utilized a zwitterion HILIC column for separation, and the optimal gradient eluents consisted of acetonitrile and aqueous solution with 0.1% formic acid and 20 mmol L-1 ammonium formate. Calibration curves were fitted by the quadratic model with 1/x weight instead of the linear model. As perchlorate was only partially extractable when using acetonitrile or methanol as the extraction solvent, acetonitrile/water (1 : 1, v/v) was chosen to extract perchlorate from tea samples. Graphitized carbon black was used as the dispersive solid phase extraction sorbent to clean up tea extracts. The method exhibited satisfactory accuracy with recoveries of 81.4-100.9% and relative standard deviations of 1.3-14.5% for green and black teas. The limit of quantitation was 0.005 mg kg-1, while the limits of detection were 0.0011 mg kg-1 for green tea and 0.0013 mg kg-1 for black tea, indicating an excellent sensitivity of this method. A 100% positive rate of perchlorate was found in 100 real tea samples, and the concentrations ranged from 0.0030 mg kg-1 to 0.78 mg kg-1. This accurate, sensitive and rapid method would be suitable for monitoring, risk assessment and source identification of perchlorate in tea.
Collapse
Affiliation(s)
- Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | | | | | | | | |
Collapse
|
5
|
Lajin B, Goessler W. HPLC-ICPMS/MS shows a significant advantage over HPLC-ICPMS for the determination of perchlorate in ground, tap, and river water. Anal Chim Acta 2020; 1094:11-17. [DOI: 10.1016/j.aca.2019.09.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
6
|
Calderón R, Palma P, Parker D, Molina M, Godoy FA, Escudey M. Perchlorate levels in soil and waters from the Atacama Desert. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 66:155-161. [PMID: 24165784 DOI: 10.1007/s00244-013-9960-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/08/2013] [Indexed: 06/02/2023]
Abstract
Perchlorate is an anion that originates as a contaminant in ground and surface waters. The presence of perchlorate in soil and water samples from northern Chile (Atacama Desert) was investigated by ion chromatography-electrospray mass spectrometry. Results indicated that perchlorate was found in five of seven soils (cultivated and uncultivated) ranging from 290 ± 1 to 2,565 ± 2 μg/kg. The greatest concentration of perchlorate was detected in Humberstone soil (2,565 ± 2 μg/kg) associated with nitrate deposits. Perchlorate levels in Chilean soils are greater than those reported for uncultivated soils in the United States. Perchlorate was also found in superficial running water ranging from 744 ± 0.01 to 1,480 ± 0.02 μg/L. Perchlorate water concentration is 30-60 times greater than levels established by the United States Environmental Protection Agency (24.5 μg/L) for drinking.
Collapse
Affiliation(s)
- R Calderón
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. B. O`Higgins 3363, C 40-33, 7254758, Santiago, Chile,
| | | | | | | | | | | |
Collapse
|
7
|
Hernández-Mesa M, García-Campaña AM, Cruces-Blanco C. Novel solid phase extraction method for the analysis of 5-nitroimidazoles and metabolites in milk samples by capillary electrophoresis. Food Chem 2014; 145:161-7. [DOI: 10.1016/j.foodchem.2013.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
|
8
|
Sungur Ş, Atan MM. Determination of nitrate, nitrite and perchlorate anions in meat, milk and their products consumed in Hatay region in Turkey. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2013; 6:6-10. [DOI: 10.1080/19393210.2012.717108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Sungur Ş, Sangün MK. Ion chromatographic determination of perchlorate in foods consumed in Hatay region. Food Chem 2011. [DOI: 10.1016/j.foodchem.2010.10.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Lin X, Gerardi AR, Breitbach ZS, Armstrong DW, Colyer CL. CE-ESI-MS analysis of singly charged inorganic and organic anions using a dicationic reagent as a complexing agent. Electrophoresis 2009; 30:3918-25. [DOI: 10.1002/elps.200900303] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|