1
|
Figueiredo BS, Ferreira JNDS, Vasconcelos VVV, Ribeiro JN, Guimarães MCC, Gonçalves ADS, da Silva AR. Interaction effects between macromolecules and photosensitizer on the ability of AlPc and InPc-loaded PHB magnetic nanoparticles in photooxidatizing simple biomolecules. Int J Biol Macromol 2022; 212:579-593. [PMID: 35618092 DOI: 10.1016/j.ijbiomac.2022.05.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
The parameters used in the preparation of polymeric nanoparticles can influence its ability to photooxidate biomolecules. This work evaluated the effects of four parameter to prepare Poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with aluminum and indium phthalocyanine (AlPc and InPc), together with iron oxide nanoparticles, assessing their influence on the size, the entrapment efficiency, and the nanoparticles recovery efficacy. The capability of free, and encapsulated, AlPc and InPc in photooxidating the bovine serum albumin (BSA) and tryptophan (Trp) was monitored by fluorescence. The AlPc-loaded nanoparticles had a larger size and a greater entrapment efficiency than that obtained by InPc-loaded nanoparticles. The free InPc was more efficient than the free AlPc to photooxidize the BSA and Trp; whereas the encapsulated AlPc was more efficient than encapsulated InPc to photooxidize the biomolecules. The higher hydrophobicity of the AlPc, combined with the greater aggregation state and the major interaction with the BSA, quenching the capacity of the free AlPc to photooxidate the biomolecules; whereas the greater interaction of the AlPc with PHB reduce the aggregation effect on the free molecules in the aqueous phase and increase the entrapment efficiency, resulting in an improving of the photodynamic efficiency and an increase of the photooxidation rate constant.
Collapse
Affiliation(s)
- Barbara Silva Figueiredo
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | - Julyana Noval de Souza Ferreira
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | | | - Joselito Nardy Ribeiro
- Health Science Center, Federal University of Espírito Santo, 29043-910 Vitória, ES, Brazil
| | - Marco Cesar Cunegundes Guimarães
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | - Arlan da Silva Gonçalves
- Federal Institute of Espírito Santo, Campus Vila Velha, 29106-010 Vila Velha, ES, Brazil; Graduate Program in Chemistry, Federal University of Espírito Santo, unit Goiabeiras, 29075-910 Vitória, ES, Brazil
| | - André Romero da Silva
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil; Federal Institute of Espírito Santo, Campus Aracruz, 29192-733 Aracruz, ES, Brazil.
| |
Collapse
|
2
|
Cruz KP, Patricio BFC, Pires VC, Amorim MF, Pinho AGSF, Quadros HC, Dantas DAS, Chaves MHC, Formiga FR, Rocha HVA, Veras PST. Development and Characterization of PLGA Nanoparticles Containing 17-DMAG, an Hsp90 Inhibitor. Front Chem 2021; 9:644827. [PMID: 34055735 PMCID: PMC8161503 DOI: 10.3389/fchem.2021.644827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a spectrum of neglected tropical diseases and its cutaneous form (CL) is characterized by papillary or ulcerated skin lesions that negatively impact patients' quality of life. Current CL treatments suffer limitations, such as severe side effects and high cost, making the search for new therapeutic alternatives an imperative. In this context, heat shock protein 90 (Hsp90) could present a novel therapeutic target, as evidence suggests that Hsp90 inhibitors, such as 17-Dimethylaminoethylamino-17-Demethoxygeldanamycin (17-DMAG), may represent promising chemotherapeutic agents against CL. As innovative input for formulation development of 17-DMAG, nano-based drug delivery systems could provide controlled release, targeting properties, and reduced drug toxicity. In this work, a double emulsion method was used to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles containing 17-DMAG. The nanoparticle was developed using two distinct protocols: Protocol 1 (P1) and Protocol 2 (P2), which differed concerning the organic solvent (acetone or dichloromethane, respectively) and procedure used to form double-emulsions (Ultra-Turrax® homogenization or sonication, respectively). The nanoparticles produced by P2 were comparatively smaller (305.5 vs. 489.0 nm) and more homogeneous polydispersion index (PdI) (0.129 vs. 0.33) than the ones made by P1. Afterward, the P2 was optimized and the best composition consisted of 2 mg of 17-DMAG, 100 mg of PLGA, 5% of polyethylene glycol (PEG 8000), 1.5 mL of the internal aqueous phase, 1% of polyvinyl alcohol (PVA), and 4 mL of the organic phase. Optimized P2 nanoparticles had a particle size of 297.2 nm (288.6-304.1) and encapsulation efficacy of 19.35% (15.42-42.18) by the supernatant method and 31.60% (19.9-48.79) by the filter/column method. Release kinetics performed at 37°C indicated that ~16% of the encapsulated 17-DMAG was released about to 72 h. In a separate set of experiments, a cell uptake assay employing confocal fluorescence microscopy revealed the internalization by macrophages of P2-optimized rhodamine B labeled nanoparticles at 30 min, 1, 2, 4, 6, 24, 48, and 72 h. Collectively, our results indicate the superior performance of P2 concerning the parameters used to assess nanoparticle development. Therefore, these findings warrant further research to evaluate optimized 17-DMAG-loaded nanoparticles (NP2-17-DMAG) for toxicity and antileishmanial effects in vitro and in vivo.
Collapse
Affiliation(s)
- Kercia P. Cruz
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Beatriz F. C. Patricio
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Vinícius C. Pires
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marina F. Amorim
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Alan G. S. F. Pinho
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Helenita C. Quadros
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Diana A. S. Dantas
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - Marcelo H. C. Chaves
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Fabio R. Formiga
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, Brazil
- Graduate Program in Applied Cellular and Molecular Biology, University of Pernambuco (UPE), Recife, Brazil
| | - Helvécio V. A. Rocha
- Laboratory of Micro and Nanotechnology, Institute of Technology of Drugs (Farmanguinhos), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Patrícia S. T. Veras
- Laboratory of Parasite-Host Interaction and Epidemiology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- National Institute of Science and Technology of Tropical Diseases (INCT-DT), National Council for Scientific Research and Development (CNPq), Salvador, Brazil
| |
Collapse
|
3
|
Pontrelli G, Carr EJ, Tiribocchi A, Succi S. Modeling drug delivery from multiple emulsions. Phys Rev E 2020; 102:023114. [PMID: 32942448 DOI: 10.1103/physreve.102.023114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
We present a mechanistic model of drug release from a multiple emulsion into an external surrounding fluid. We consider a single multilayer droplet where the drug kinetics are described by a pure diffusive process through different liquid shells. The multilayer problem is described by a system of diffusion equations coupled via interlayer conditions imposing continuity of drug concentration and flux. Mass resistance is imposed at the outer boundary through the application of a surfactant at the external surface of the droplet. The two-dimensional problem is solved numerically by finite volume discretization. Concentration profiles and drug release curves are presented for three typical round-shaped (circle, ellipse, and bullet) droplets and the dependency of the solution on the mass transfer coefficient at the surface analyzed. The main result shows a reduced release time for an increased elongation of the droplets.
Collapse
Affiliation(s)
- G Pontrelli
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - E J Carr
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - A Tiribocchi
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
- Italian Institute of Technology, CNLS@Sapienza, Rome, Italy
| | - S Succi
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
- Italian Institute of Technology, CNLS@Sapienza, Rome, Italy
| |
Collapse
|
4
|
El-Fattah AA. Photosensitizer-loaded nanoparticles: characterization and encapsulation efficiency. BIOINSPIRED, BIOMIMETIC AND NANOBIOMATERIALS 2018; 7:100-108. [DOI: 10.1680/jbibn.17.00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Amphiphilic diblock copolymers, methoxy poly(ethylene glycol)/poly(ε-caprolactone) (PECL), were synthesized by ring-opening polymerization of ε-caprolactone initiated by the hydroxyl groups of methoxy poly(ethylene glycol). The prepared PECL diblock copolymers were characterized using Fourier transform infrared spectroscopy, proton (1H) nuclear magnetic resonance spectroscopy, gel permeation chromatography, differential scanning calorimetry and wide-angle X-ray diffraction. Nanoparticles of these copolymers were prepared by the double-emulsification solvent evaporation method and were used to load methylene blue (MB) as a model drug photosensitizer. Scanning electron microscopy micrographs revealed that the unloaded nanoparticles were nearly spherical and had particle sizes ranging from 263 to 346 nm with relatively uniform size distribution. It was found that the hydrophobic block length of PECL nanoparticles was a crucial factor in controlling the size of MB-loaded nanoparticles and the encapsulation efficiency. The MB-loaded nanoparticles were irregular and not uniform and had a larger size that ranged from 304 to 367 nm. Moreover, MB encapsulation efficiency increased by about 30% with reducing content of the hydrophobic poly(ε-caprolactone) in PECL copolymer nanoparticles. The amphiphilic PECL nanoparticles in this study offer potential as alternative nanomaterial vehicles for MB aimed at photodynamic therapy applications.
Collapse
Affiliation(s)
- Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt; Department of Chemistry, College of Science, University of Bahrain, Kingdom of Bahrain
| |
Collapse
|
5
|
Li X, Jiang X. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles. Adv Drug Deliv Rev 2018; 128:101-114. [PMID: 29277543 DOI: 10.1016/j.addr.2017.12.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Microfluidic chips allow the rapid production of a library of nanoparticles (NPs) with distinct properties by changing the precursors and the flow rates, significantly decreasing the time for screening optimal formulation as carriers for drug delivery compared to conventional methods. The batch-to-batch reproducibility which is essential for clinical translation is achieved by precisely controlling the precursors and the flow rate, regardless of operators. Poly (lactic-co-glycolic acid) (PLGA) is the most widely used Food and Drug Administration (FDA)-approved biodegradable polymers. Researchers often combine PLGA with lipids or amphiphilic molecules to assemble into a core/shell structure to exploit the potential of PLGA-based NPs as powerful carriers for cancer-related drug delivery. In this review, we discuss the advantages associated with microfluidic chips for producing PLGA-based functional nanocomplexes for drug delivery. These laboratory-based methods can readily scale up to provide sufficient amount of PLGA-based NPs in microfluidic chips for clinical studies and industrial-scale production.
Collapse
|
6
|
Jahan ST, Haddadi A. Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles. Int J Nanomedicine 2015; 10:7371-84. [PMID: 26677326 PMCID: PMC4677653 DOI: 10.2147/ijn.s90866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to assess the effect of various formulation parameters on anti-CD205 antibody decorated poly(d, l-lactide co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to target dendritic cells (DCs). In brief, emulsification solvent evaporation technique was adapted to design NP formulations using two different viscosity grades (low and high) of both ester and carboxylic acid terminated PLGA. Incorporation of ligand was achieved following physical adsorption or chemical conjugation processes. The physicochemical characterizations of formulations were executed to assess the effects of different solvents (chloroform and ethyl acetate), stabilizer percentage, polymer types, polymer viscosities, ligand-NP bonding types, cross-linkers, and cryoprotectants (sucrose and trehalose). Modification of any of these parameters shows significant improvement of physicochemical properties of NPs. Ethyl acetate was the solvent of choice for the formulations to ensure better emulsion formation. Infrared spectroscopy confirmed the presence of anti-CD205 antibody in the NP formulation. Finally, cytotoxicity assay confirmed the safety profile of the NPs for DCs. Thus, ligand modified structurally concealed PLGA NPs is a promising delivery tool for targeting DCs in vivo.
Collapse
Affiliation(s)
- Sheikh Tasnim Jahan
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Azita Haddadi
- Division of Pharmacy, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015; 496:173-90. [DOI: 10.1016/j.ijpharm.2015.10.057] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
|
8
|
PHEA–PLA biocompatible nanoparticles by technique of solvent evaporation from multiple emulsions. Int J Pharm 2015; 495:719-27. [DOI: 10.1016/j.ijpharm.2015.09.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
|
9
|
Nanomedicine of anastrozole for breast cancer: Physicochemical evaluation, in vitro cytotoxicity on BT-549 and MCF-7 cell lines and preclinical study on rat model. Life Sci 2015; 141:143-55. [DOI: 10.1016/j.lfs.2015.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022]
|
10
|
Kim DH, Termsarasab U, Cho HJ, Yoon IS, Lee JY, Moon HT, Kim DD. Preparation and characterization of self-assembled nanoparticles based on low-molecular-weight heparin and stearylamine conjugates for controlled delivery of docetaxel. Int J Nanomedicine 2014; 9:5711-27. [PMID: 25525355 PMCID: PMC4268911 DOI: 10.2147/ijn.s74353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Low-molecular-weight heparin (LMWH)–stearylamine (SA) conjugates (LHSA)-based self-assembled nanoparticles were prepared for intravenous delivery of docetaxel (DCT). 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide were used as coupling agents for synthesis of LHSA conjugates. The physicochemical properties, in vitro antitumor efficacy, in vitro cellular uptake efficiency, in vivo antitumor efficacy, and in vivo pharmacokinetics of LHSA nanoparticles were investigated. The LHSA nanoparticles exhibited a spherical shape with a mean diameter of 140–180 nm and a negative surface charge. According to in vitro release and in vivo pharmacokinetic test results, the docetaxel-loaded LHSA5 (LMWH:SA =1:5) nanoparticles exhibited sustained drug release profiles. The blank LHSA nanoparticles demonstrated only an insignificant cytotoxicity in MCF-7 and MDAMB 231 human breast cancer cells; additionally, higher cellular uptake of coumarin 6 (C6) in MCF-7 and MDAMB 231 cells was observed in the LHSA5 nanoparticles group than that in the C6 solution group. The in vivo tumor growth inhibition efficacy of docetaxel-loaded LHSA5 nanoparticles was also significantly higher than the Taxotere®-treated group in the MDAMB 231 tumor-xenografted mouse model. These results indicated that the LHSA5-based nanoparticles could be a promising anticancer drug delivery system.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ubonvan Termsarasab
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Republic of Korea
| | - In-Soo Yoon
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun Tae Moon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Lv G, Wang F, Cai W, Li H, Zhang X. Influences of addition of hydrophilic surfactants on the W/O emulsions stabilized by lipophilic surfactants. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.06.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Pagar K, Vavia P. Rivastigmine-loaded L-lactide-depsipeptide polymeric nanoparticles: decisive formulation variable optimization. Sci Pharm 2013; 81:865-85. [PMID: 24106679 PMCID: PMC3791946 DOI: 10.3797/scipharm.1211-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/28/2013] [Indexed: 12/20/2022] Open
Abstract
The main aim of the investigation was to explore a novel L-lactide-depsipeptide copolymer for the development of rivastigmine-loaded polymeric nanoparticles. L-lactide-depsipeptide synthesis was based on the ring opening polymerization reaction of L-lactide with the cyclodepsipeptide, cyclo(Glc-Leu), using tin 2-ethyl hexanoate as an initiator. Rivastigmine-loaded nanoparticles were prepared by the single emulsion-solvent evaporation technique. The influence of various critical formulation variables like sonication time, amount of polymer, amount of drug, stabilizer concentration, drug-to-polymer ratio, and organic-to-aqueous phase ratio on particle size and entrapment efficiency was studied. The optimized formulation having a particle size of 142.2 ± 21.3 nm with an entrapment efficiency of 60.72 ± 3.72% was obtained. Increased rivastigmine entrapment within the polymer matrix was obtained with a relatively low organic-to-aqueous phase ratio and high drug-to-polymer ratio. A decrease in the average size of the nanoparticles was observed with a decrease in the amount of polymer added and an increase in the sonication time. Prolonged sonication time, however, decreased rivastigmine entrapment. From the different lyoprotectant tested, only trehalose was found to prevent nanoparticle aggregation upon application of the freeze-thaw cycle. Drug incorporation into the polymeric matrix was confirmed by the DSC and XRD study. The spherical nature of the nanoparticles was confirmed by the SEM study. The in vitro drug release study showed the sustained release of more than 90% of the drug up to 72 h. Thus, L-lactide-depsipeptide can be used as an efficient carrier for the nanoparticle preparation of rivastigmine.
Collapse
Affiliation(s)
- Kunal Pagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, University under Section 3 of UGC Act-1956, Elite Status & Centre of Excellence - Govt. of Maharashtra, TEQIP Phase II Funded, Matunga, Mumbai-400019, India
| | | |
Collapse
|
13
|
Jain S, Rathi VV, Jain AK, Das M, Godugu C. Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine (Lond) 2012; 7:1311-37. [DOI: 10.2217/nnm.12.31] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aims: The present study reports a novel approach for enhancing the oral absorption and hypoglycemic activity of insulin via encapsulation in folate-(FA) coupled polyethylene glycol (PEG)ylated polylactide-co-glycolide (PLGA) nanoparticles (NPs; FA-PEG-PLGA NPs). Materials & methods: Insulin-loaded FA-PEG-PLGA NPs (size ∼260 nm; insulin loading ∼6.5% [w/w]; encapsulation efficiency: 87.0 ± 1.92%) were prepared by double-emulsion solvent evaporation method. The bioavailability and hypoglycemic activity of orally administered FA–insulin NPs were studied in diabetic rats. Results & conclusion: FA-PEG-PLGA NPs (50 U/kg) exhibited a twofold increase in the oral bioavailability (double hypoglycemia) without any hypoglycemic shock as compared to subcutaneously administered standard insulin solution. Insulin NPs maintained a continual blood glucose level for 24 h, which, however, was transient (<8 h) in the case of subcutaneous insulin and associated with severe hypoglycemic shock. Overall, we have developed a patient-compliant, oral nanoformulation of insulin, once-daily administration of which would be sufficient to control diabetes for at least 24 h. Original submitted 16 November 2011; Revised submitted 2 February 2012; Published online 14 May 2012
Collapse
Affiliation(s)
- Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali), Punjab 160062, India
| | - Vishal V Rathi
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali), Punjab 160062, India
| | - Amit K Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali), Punjab 160062, India
| | - Manasmita Das
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali), Punjab 160062, India
| | - Chandraiah Godugu
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Sector 67, S.A.S. Nagar, (Mohali), Punjab 160062, India
| |
Collapse
|
14
|
Kemala T, Budianto E, Soegiyono B. Preparation and characterization of microspheres based on blend of poly(lactic acid) and poly(ɛ-caprolactone) with poly(vinyl alcohol) as emulsifier. ARAB J CHEM 2012. [DOI: 10.1016/j.arabjc.2010.08.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
15
|
Chen YS, Alany RG, Young SA, Green CR, Rupenthal ID. In vitro release characteristics and cellular uptake of poly(D,L-lactic-co-glycolic acid) nanoparticles for topical delivery of antisense oligodeoxynucleotides. Drug Deliv 2011; 18:493-501. [PMID: 21696294 DOI: 10.3109/10717544.2011.589088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The efficacy of antisense oligodeoxynucleotides (AsODNs) is compromised by their poor stability in biological fluids and the inefficient cellular uptake due to their size and negative charge. Since chemical modifications of these molecules have resulted in a number of non-antisense activities, incorporation into particulate delivery systems has offered a promising alternative. The aim of this study was to evaluate various poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles for AsODN entrapment and delivery. PLGA nanoparticles were prepared using the double emulsion solvent evaporation method. The influence of formulation parameters such as PLGA concentration and volume ratio of internal aqueous phase volume (Va1) to organic phase volume (Vo) to external aqueous phase volume (Va2) on particle size, polydispersity index (PDI) and zeta potential (ZP) was investigated using a full factorial study. The particle size increased with increasing PLGA concentrations and volume ratios, with an interaction detectable between the two factors. AsODN entrapment efficiencies ranged between 49.97% and 54.95% with no significant difference between various formulations. By fitting the in vitro release profiles to a dual first order release model it was shown that the AsODN release occurred via two processes: a diffusion controlled process in the early phase (25 to 32% within one day) and a PLGA degradation process in the latter (39 to 70% after 14 days). Cellular uptake studies using primary corneal epithelial cells suggested active transport of nanoparticles via endocytosis. PLGA nanoparticles therefore show potential to successfully entrap AsODNs, transport them into cells and release them over time due to polymer erosion.
Collapse
Affiliation(s)
- Ying-Shan Chen
- Department of Ophthalmology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|
16
|
Biodegradable tri-block copolymer poly(lactic acid)-poly(ethylene glycol)-poly(l-lysine)(PLA-PEG-PLL) as a non-viral vector to enhance gene transfection. Int J Mol Sci 2011; 12:1371-88. [PMID: 21541064 PMCID: PMC3083711 DOI: 10.3390/ijms12021371] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 01/29/2011] [Accepted: 02/15/2011] [Indexed: 12/17/2022] Open
Abstract
Low cytotoxicity and high gene transfection efficiency are critical issues in designing current non-viral gene delivery vectors. The purpose of the present work was to synthesize the novel biodegradable poly (lactic acid)-poly(ethylene glycol)-poly(l-lysine) (PLA-PEG-PLL) copolymer, and explore its applicability and feasibility as a non-viral vector for gene transport. PLA-PEG-PLL was obtained by the ring-opening polymerization of Lys(Z)-NCA onto amine-terminated NH(2)-PEG-PLA, then acidolysis to remove benzyloxycarbonyl. The tri-block copolymer PLA-PEG-PLL combined the characters of cationic polymer PLL, PLA and PEG: the self-assembled nanoparticles (NPs) possessed a PEG loop structure to increase the stability, hydrophobic PLA segments as the core, and the primary ɛ-amine groups of lysine in PLL to electrostatically interact with negatively charged phosphate groups of DNA to deposit with the PLA core. The physicochemical properties (morphology, particle size and surface charge) and the biological properties (protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in HeLa and HepG2 cells) of the gene-loaded PLA-PEG-PLL nanoparticles (PLA-PEG-PLL NPs) were evaluated, respectively. Agarose gel electrophoresis assay confirmed that the PLA-PEG-PLL NPs could condense DNA thoroughly and protect DNA from nuclease degradation. Initial experiments showed that PLA-PEG-PLL NPs/DNA complexes exhibited almost no toxicity and higher gene expression (up to 21.64% in HepG2 cells and 31.63% in HeLa cells) than PEI/DNA complexes (14.01% and 24.22%). These results revealed that the biodegradable tri-block copolymer PLA-PEG-PLL might be a very attractive candidate as a non-viral vector and might alleviate the drawbacks of the conventional cationic vectors/DNA complexes for gene delivery in vivo.
Collapse
|
17
|
Zhang T, Youan BBC. Analysis of process parameters affecting spray-dried oily core nanocapsules using factorial design. AAPS PharmSciTech 2010; 11:1422-31. [PMID: 20839078 DOI: 10.1208/s12249-010-9516-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 08/16/2010] [Indexed: 11/30/2022] Open
Abstract
The purpose of this work was to optimize the process parameters required for the production of spray-dried oily core nanocapsules (NCs) with targeted size and drug yield using a two-level four-factor fractional factorial experimental design (FFED). The coded process parameters chosen were inlet temperature (X(1)), feed flow rate (X(2)), atomizing air flow (X(3)), and aspiration rate (X(4)). The produced NCs were characterized for size, yield, morphology, and powder flowability by dynamic light scattering, electron microscope, Carr's index, and Hausner ratio measurement, respectively. The mean size of produced NCs ranged from 129.5 to 444.8 nm, with yield varying from 14.1% to 31.1%. The statistical analysis indicated an adequate model fit in predicting the effect of process parameters affecting yield. Predicted condition for maximum yield was: inlet temperature 140°C, atomizing air flow 600 L/h, feed flow rate 0.18 L/h, and aspiration air flow set at 100%, which led to a yield of 30.8%. The morphological analysis showed the existence of oily core and spherical nanostructure. The results from powder flowability analysis indicated average Carr's index and Hausner ratio of 42.77% and 1.76, respectively. Spray-dried oily core NCs with size lower than 200 nm were successfully produced, and the FFED proved to be an effective approach in predicting the production of spray-dried NCs of targeted yield.
Collapse
|
18
|
Essa S, Rabanel JM, Hildgen P. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(d, l-lactide) (PLA) based nanoparticles. Eur J Pharm Biopharm 2010; 75:96-106. [DOI: 10.1016/j.ejpb.2010.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 02/25/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
|
19
|
Zhang J, Ge X, Wang M, Yang J, Wu Q, Wu M, Liu N, Jin Z. Hybrid hollow microspheres templated from double Pickering emulsions. Chem Commun (Camb) 2010; 46:4318-20. [DOI: 10.1039/c002844d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Zou W, Liu C, Chen Z, Zhang N. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA. NANOSCALE RESEARCH LETTERS 2009; 4:982-992. [PMID: 20596550 PMCID: PMC2893611 DOI: 10.1007/s11671-009-9345-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/06/2009] [Indexed: 05/21/2023]
Abstract
The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.
Collapse
Affiliation(s)
- Weiwei Zou
- School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, 250012, Ji-nan, China
| | - Chunxi Liu
- School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, 250012, Ji-nan, China
| | - Zhijin Chen
- School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, 250012, Ji-nan, China
| | - Na Zhang
- School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, 250012, Ji-nan, China
| |
Collapse
|
21
|
Hammady T, El-Gindy A, Lejmi E, Dhanikula R, Moreau P, Hildgen P. Characteristics and properties of nanospheres co-loaded with lipophilic and hydrophilic drug models. Int J Pharm 2009; 369:185-95. [DOI: 10.1016/j.ijpharm.2008.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
|
22
|
Davaran S, Omidi Y, Mohammad Reza Rashidi, Anzabi M, Shayanfar A, Ghyasvand S, Vesal N, Davaran F. Preparation and in vitro Evaluation of Linear and Star-branched PLGA Nanoparticles for Insulin Delivery. J BIOACT COMPAT POL 2008. [DOI: 10.1177/0883911507088276] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biodegradable nanoparticles, as drug delivery paradigms, have been extensively used for delivery of a wide range of small molecules as well as macromolecules, such as peptides, proteins, and genes. The morphological modification may improve the physicochemical characteristics of the biodegradable polymers. In the current investigation, the synthesis and characterization of linear, poly(D,L-lactide-co-glycolide) (PLGA)-poly(ethylene glycol) (PEG-PLGA), star-branched β-cyclodextrin-PLGA (β-CD-PLGA), and glucose-PLGA (Glu-PLGA) copolymers containing insulin as a model peptide drug have been reported. Linear and star-branched copolymers of PLGA were synthesized by bulk melt polymerization of the lactones (lactide and glycolide) in the presence of PEG, glucose, or β-CD using Sn-octoate as catalyst. Nanoparticles were prepared by a modified (w1/o/w 2) double emulsion method. Bovine insulin was successfully encapsulated into the linear and star-branched PLGA nanoparticles with retention of insulin stability and the nanoparticles preparation process was optimized to reduce the burst effect and provide in vitro sustained release. The average particle size of samples was 120—355 nm. The cumulative amount of 65—84% insulin was released from the samples after 24 days. The yield of encapsulation of insulin was superior to 95%. Based on these findings, it is suggested that the novel PLGA nanoparticles can be used as a carrier for prolonged delivery of protein—peptide drugs.
Collapse
Affiliation(s)
- Soodabeh Davaran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran, , Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Anzabi
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Ghyasvand
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nezamaldin Vesal
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,
| |
Collapse
|
23
|
Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA. Controllable Monodisperse Multiple Emulsions. Angew Chem Int Ed Engl 2007; 46:8970-4. [PMID: 17847154 DOI: 10.1002/anie.200701358] [Citation(s) in RCA: 402] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Liang-Yin Chu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
24
|
Chu LY, Utada A, Shah R, Kim JW, Weitz D. Controllable Monodisperse Multiple Emulsions. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701358] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Zhao H, Gagnon J, Häfeli UO. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres. BIOMAGNETIC RESEARCH AND TECHNOLOGY 2007; 5:2. [PMID: 17407608 PMCID: PMC1863415 DOI: 10.1186/1477-044x-5-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 04/04/2007] [Indexed: 11/10/2022]
Abstract
The aim of this study was to prepare biodegradable sustained release magnetite microspheres sized between 1 to 2 microm. The microspheres with or without magnetic materials were prepared by a W/O/W double emulsion solvent evaporation technique using poly(lactide-co-glycolide) (PLGA) as the biodegradable matrix forming polymer. Effects of manufacturing and formulation variables on particle size were investigated with non-magnetic microspheres. Microsphere size could be controlled by modification of homogenization speed, PLGA concentration in the oil phase, oil phase volume, solvent composition, and polyvinyl alcohol (PVA) concentration in the outer water phase. Most influential were the agitation velocity and all parameters that influence the kinematic viscosity of oil and outer water phase, specifically the type and concentration of the oil phase. The magnetic component yielding homogeneous magnetic microspheres consisted of magnetite nanoparticles of 8 nm diameter stabilized with a polyethylene glycole/polyacrylic acid (PEG/PAA) coating and a saturation magnetization of 47.8 emu/g. Non-magnetic and magnetic microspheres had very similar size, morphology, and size distribution, as shown by scanning electron microscopy. The optimized conditions yielded microspheres with 13.7 weight% of magnetite and an average diameter of 1.37 microm. Such biodegradable magnetic microspheres seem appropriate for vascular administration followed by magnetic drug targeting.
Collapse
Affiliation(s)
- Hong Zhao
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, B.C. V6T 1Z3, Canada
| | - Jeffrey Gagnon
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, B.C. V6T 1Z3, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, B.C. V6T 1Z3, Canada
| |
Collapse
|