1
|
Shin DC, Cho JH, Ud Din F, Jin SG, Choi HG. Novel Fimasartan Fluidized Solid Dispersion and Its Tablet: Preparation, Crystallinity, Solubility, Dissolution, and Pharmacokinetics in Beagle Dogs. Eur J Drug Metab Pharmacokinet 2024; 49:723-732. [PMID: 39405004 DOI: 10.1007/s13318-024-00919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 11/09/2024]
Abstract
BACKGROUND AND OBJECTIVES Fimasartan, an angiotensin II receptor antagonist, exhibits low bioavailability due to its poor solubility; consequently, using solubilization technologies is essential to improve its bioavailability. In this study, novel fimasartan fluidized solid dispersion (FFSD) was developed using a fluid bed granulator to enhance the drug solubility and oral bioavailability. METHODS An appropriate FFSD was prepared in 50% ethanol using a fluid bed granulator, and its drug dissolution, morphology, and crystallinity were evaluated in comparison to the powdered drug. Moreover, the dissolution in various pH conditions and pharmacokinetics of the FFSD tablet in beagle dogs were investigated compared to the commercial fimasartan tablet. RESULTS Among the hydrophilic polymers tested, hydroxypropyl methylcellulose (HPMC) showed the highest solubility. The FFSD, composed of fimasartan, HPMC, and microcrystalline cellulose at the weight ratio of 20:10:25, gave a granular aggregation of several particles with a smooth surface. The drug in this FFSD existed as an amorphous state, leading to a greatly increased drug dissolution. The FFSD tablet was prepared by compressing a mixture of FFSD, mannitol, croscarmellose sodium, and magnesium stearate at the weight ratio of 55:40:5:1. The FFSD tablet gave significantly higher drug dissolution, plasma concentrations, maximum plasma concentration (Cmax) and area under the whole blood concentration-time curve (AUC) values than did the commercial fimasartan tablet. In the beagle dogs, the FFSD tablet (140.39 ± 27.40 ng·h/ml) had about a 1.7-fold higher AUC than the commercial fimasartan tablet (80.58 ± 22.18 ng·h/ml), indicating an enhancement in the bioavailability. CONCLUSIONS This novel FFSD tablet could be a potential oral pharmaceutical product with the improved oral bioavailability of fimasartan.
Collapse
Affiliation(s)
- Dong Chul Shin
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| | - Jung Hyun Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, South Korea
| | - Fakhar Ud Din
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea.
| |
Collapse
|
2
|
Li M, Fang G, Zahid F, Saleem R, Ishrat G, Ali Z, Naeem M, Din FU. Co-delivery of paclitaxel and curcumin loaded solid lipid nanoparticles for improved targeting of lung cancer: In vitro and in vivo investigation. Heliyon 2024; 10:e30290. [PMID: 38720725 PMCID: PMC11076978 DOI: 10.1016/j.heliyon.2024.e30290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
The objective of this study was to develop nanotechnology-mediated paclitaxel (PAC) and curcumin (CUR) co-loaded solid lipid nanoparticles (PAC-CUR-SLNs) for the treatment of lung cancer, which is a leading cause of death worldwide. Around 85 % cases of lungs cancer constitute non-small cell lung cancer (NSCLC). PAC-CUR-SLNs were prepared via high pressure homogenization. The in vitro drug release of PAC-CUR-SLNs was checked followed by their in vitro cytotoxic investigation using adenocarcinomic human alveolar basal epithelial cells (A549) cell lines. Anticancer effects along with side effects of the synergistic delivery of PAC-CUR-SLNs were studied in vivo, using BALB/c mice. PAC-CUR-SLNs were nano sized (190 nm), homogeneously disseminated particles with %IE of both PAC and CUR above 94 %. PAC-CUR-SLNs released PAC and CUR in a controlled fashion when compared with free drug suspensions. The cytotoxicity of PAC-CUR-SLNs was higher than individual drug-loaded SLNs and pure drugs. Moreover, the co-delivery displayed synergistic effect, indicating potential of PAC-CUR-SLNs in lung cancer treatment. In vivo tumor investigation of PAC-CUR-SLNs exhibited 12-fold reduced tumor volume and almost no change in body weight of BALB/c mice, when compared with the experimental groups including control group. The inhibition of tumor rate on day 28 was 82.7 % in the PAC-CUR-SLNs group, which was significantly higher than the pure drugs and monotherapies. It can be concluded that, encapsulating the co-loaded antitumor drugs like PAC-CUR in SLNs may help in improved targeting of the tumor with enhanced anticancer effect.
Collapse
Affiliation(s)
- Mao Li
- Guangxi Higher Education Key Laboratory for the Research of Du-related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Gang Fang
- Guangxi Higher Education Key Laboratory for the Research of Du-related Diseases in Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, 530001, China
| | - Fatima Zahid
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Raheela Saleem
- College of Pharmacy, Liaquat University of Medical and Health Sciences Jamshoro, Pakistan
| | - Ghazala Ishrat
- Department of Pharmaceutics, Faculty of Pharmacy, Salim Habib University, Karachi, Pakistan
| | - Zakir Ali
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Muhammad Naeem
- National University of Medical Sciences, Rawalpindi, Pakistan
| | - Fakhar ud Din
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| |
Collapse
|
3
|
Goo YT, Kim MS, Choi JY, Sin GH, Hong SH, Kim CH, Choi YW. A cochleate formulation optimized by D-optimal mixture design enhances oral bioavailability of Revaprazan. J Liposome Res 2024; 34:31-43. [PMID: 37158827 DOI: 10.1080/08982104.2023.2209171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/09/2022] [Indexed: 05/10/2023]
Abstract
A cochleate formulation was developed to enhance the oral bioavailability of revaprazan (RVP). Dimyristoyl phosphatidylcholine (DMPC) liposome containing dicetyl phosphate (DCP) successfully formed a cochleate after treatment with CaCl2, whereas that containing sodium deoxycholate did not. Cochleate was optimised using a D-optimal mixture design with three independent variables-DMPC (X1, 70.58 mol%), cholesterol (X2, 22.54 mol%), and DCP (X3, 6.88 mol%)-and three response variables: encapsulation efficiency (Y1, 76.92%), released amount of free fatty acid at 2 h (Y2, 39.82%), and released amount of RVP at 6 h (Y3, 73.72%). The desirability function was 0.616, showing an excellent agreement between the predicted and experimental values. The cylindrical morphology of the optimised cochleate was visualised, and laurdan spectroscopy confirmed the dehydrated membrane interface, showing an increased generalised polarisation value (approximately 0.5) over small unilamellar vesicle of RVP (RVP-SUV; approximately 0.1). The optimised cochleate showed greater resistance to pancreatic enzyme than RVP-SUV. RVP was released in a controlled manner, achieving approximately 94% release in 12 h. Following oral administration in rats, the optimised cochleate improved the relative bioavailability of RVP by approximately 274%, 255%, and 172% compared to RVP suspension, a physical mixture of RVP and the cochleate, and RVP-SUV, respectively. Thus, the optimised cochleate formulation might be a good candidate for the practical development of RVP.
Collapse
Affiliation(s)
- Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Min Song Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, Toronto, Canada
| | - Gi Hyeong Sin
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sun Ho Hong
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Aycan D, Gül İ, Yorulmaz V, Alemdar N. Gelatin microsphere-alginate hydrogel combined system for sustained and gastric targeted delivery of 5-fluorouracil. Int J Biol Macromol 2024; 255:128022. [PMID: 37972837 DOI: 10.1016/j.ijbiomac.2023.128022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
In the current study, novel gelatin microspheres/methacrylated alginate hydrogel combined system (5-FU-GELms/Alg-MA) was developed for gastric targeted delivery of 5-fluorouracil as an anticancer agent. While water-in-oil emulsification method was used for the production of 5-FU-GELms, Alg-MA was synthesized through methacrylation reaction occurred by epoxide ring-opening mechanism. Then, 5-FU-GELms/Alg-MA hydrogel system was fabricated by the encapsulation of 5-FU-GELms into Alg-MA hydrogel network via UV-crosslinking. To evaluate applicability of fabricated 5-FU-GELms/Alg-MA as gastric targeted drug delivery vehicle, both swelling and in vitro drug release experiments were carried out at pH 1.2 medium resembling gastric fluid. Compared to drug release directly from 5-FU-GELms, 5-FU-GELms/Alg-MA hydrogel system showed more controlled and sustained drug release profile with lower amount of cumulative release starting from early stages, since hydrogel matrix created a barrier to the diffusion of 5-FU included in microspheres. Drug release kinetic results obtained by applying various kinetic models to release data showed that the mechanism of 5-FU release from 5-FU-GELms/Alg-MA hydrogel system is controlled by Fickian diffusion. All results revealed that 5-FU-GELms/Alg-MA hydrogel integrated system could be potentially utilized as gastric targeted drug carrier to enhance therapeutic efficacy and reduce systemic side effects in gastric cancer treatments for future studies.
Collapse
Affiliation(s)
- Didem Aycan
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - İnanç Gül
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - Valeria Yorulmaz
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - Neslihan Alemdar
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey.
| |
Collapse
|
5
|
Nguyen TTK, Pham KY, Yook S. Engineered therapeutic proteins for sustained-release drug delivery systems. Acta Biomater 2023; 171:131-154. [PMID: 37717712 DOI: 10.1016/j.actbio.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Proteins play a vital role in diverse biological processes in the human body, and protein therapeutics have been applied to treat different diseases such as cancers, genetic disorders, autoimmunity, and inflammation. Protein therapeutics have demonstrated their advantages, such as specific pharmaceutical effects, low toxicity, and strong solubility. However, several disadvantages arise in clinical applications, including short half-life, immunogenicity, and low permeation, leading to reduced drug effectiveness. The structure of protein therapeutics can be modified to increase molecular size, leading to prolonged stability and increased plasma half-life. Notably, the controlled-release delivery systems for the sustained release of protein drugs and preserving the stability of cargo proteins are envisioned as a potential approach to overcome these challenges. In this review, we summarize recent research progress related to structural modifications (PEGylation, glycosylation, poly amino acid modification, and molecular biology-based strategies) and promising long-term delivery systems, such as polymer-based systems (injectable gel/implants, microparticles, nanoparticles, micro/nanogels, functional polymers), lipid-based systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers), and inorganic nanoparticles exploited for protein therapeutics. STATEMENT OF SIGNIFICANCE: In this review, we highlight recent advances concerning modifying proteins directly to enhance their stability and functionality and discuss state-of-the-art methods for the delivery and controlled long-term release of active protein therapeutics to their target site. In terms of drug modifications, four widely used strategies, including PEGylation, poly amino acid modification, glycosylation, and genetic, are discussed. As for drug delivery systems, we emphasize recent progress relating to polymer-based systems, lipid-based systems developed, and inorganic nanoparticles for protein sustained-release delivery. This review points out the areas requiring focused research attention before the full potential of protein therapeutics for human health and disease can be realized.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Khang-Yen Pham
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Bibi T, Bano S, Ud Din F, Ali H, Khan S. Preparation, characterization, and pharmacological application of oral Honokiol-loaded solid lipid nanoparticles for diabetic neuropathy. Int J Pharm 2023; 645:123399. [PMID: 37703961 DOI: 10.1016/j.ijpharm.2023.123399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Honokiol is a phytochemical component with a variety of pharmacological properties. However, the major limitation of Honokiol is its poor solubility and low oral bioavailability. In this study, we formulated and characterized oral Honokiol-loaded solid lipid nanoparticles (SLNs) to enhance bioavailability and then evaluated their effectiveness in experimental diabetic neuropathy (DN). The finalized formulation has a spherical morphology, a particle size (PS) of 121.31 ± 9.051 nm, a polydispersity index (PDI) of 0.249 ± 0.002, a zeta potential (ZP) of -20.8 ± 2.72 mV, and an entrapment efficiency (% EE) of 88.66 ± 2.30 %. In-vitro release data shows, Honokiol-SLNs displayed a sustained release profile at pH (7.4). The oral bioavailability of Honokiol-SLNs was remarkably greater (8-fold) than Honokiol-Pure suspension. The neuroprotective property of Honokiol-SLNs was initially demonstrated against hydrogen peroxide H2O2-stimulated PC12 (pheochromocytoma) cells. Furthermore, results of in-vivo studies demonstrated that treatment with Honokiol-SLNs significantly (p < 0.001) suppressed oxidative stress by inhibition of nuclear factor kappa B (NF-κB) and significant (p < 0.001) upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling in the spinal cord. The expression of transient receptor potential melastatin 8(TRPM8) and transient receptor potential vanilloid 1 (TRPV1) was significantly (p < 0.001) downregulated. Honokiol-SLNs inhibited apoptosis by significant (p < 0.001) downregulation of cleaved caspase-3 expression in the spinal cord. These findings demonstrate that Honokiol-SLNs providedbetter neuroprotection in DN because of higher oral bioavailability.
Collapse
Affiliation(s)
- Tehmina Bibi
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shahar Bano
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Nanomedicine Research Group, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
7
|
Luo X, Saleem A, Shafique U, Sarwar S, Ullah K, Imran M, Zeb A, Din FU. Rivaroxaban-loaded SLNs with treatment potential of deep vein thrombosis: in-vitro, in-vivo, and toxicity evaluation. Pharm Dev Technol 2023; 28:625-637. [PMID: 37366661 DOI: 10.1080/10837450.2023.2231069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVES Rivaroxaban (RXB), a novel Xa inhibitor having groundbreaking therapeutic potential. However, this drug is associated with few limitations, including its pharmacokinetics related toxicities. Here, we developed RXB-loaded SLNs (RXB-SLNs) to improve its biopharmaceutical profile. Methods: High pressure homogenizer was used to prepare RXB-SLNs, followed by their particle characterization, Transmission electron microscopy (TEM), Dynamic light scattering (DSC), and Powder X-ray diffraction (PXRD) analysis. Beside this, in-vitro, ex-vivo, and in-vivo evaluation, prothrombin time assessment and toxicity was investigated. RESULTS RXB-SLNs had their particle size in nano range (99.1 ± 5.50 nm) with excellent morphology and low polydispersity index (0.402 ± 0.02) and suitable zeta potential (-25.9 ± 1.4 mV). The incorporation efficiency was observed around 95.9 ± 3.9%. In-vitro release profiles of the RXB-SLNs exhibited enhanced dissolution (89 ± 9.91%) as compared to pure drug (11 ± 1.43%) after 24 h of the study. PK study demonstrated a seven times enhanced bioavailability of RXB-SLNs when compared with pure drug. Furthermore, RXB-SLNs exhibited an expressive anti-coagulant behavior in human and rat blood plasma. Also, the final formulation exhibited no toxicity after oral administration of the SLNs. CONCLUSIONS All together, these studies revealed the capability of the SLNs for carrying the RXB with enhanced therapeutic efficacy and no toxicity, most importantly for the treatment of deep vein thrombosis.
Collapse
Affiliation(s)
- Xuemei Luo
- Department of General Surgery, Mianzhu Peoples Hospital of Sichuan, Mianzhu, Sichuan, China
| | - Aiman Saleem
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Uswa Shafique
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadia Sarwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Kalim Ullah
- Department of Zoology, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
8
|
Guo Z, Afza R, Moneeb Khan M, Khan SU, Khan MW, Ali Z, Batool S, Din FU. Investigation of the treatment potential of Raloxifene-loaded polymeric nanoparticles in osteoporosis: In-vitro and in-vivo analyses. Heliyon 2023; 9:e20107. [PMID: 37810010 PMCID: PMC10559869 DOI: 10.1016/j.heliyon.2023.e20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Osteoporosis (OP), is a systemic bone disorder associated with low bone mass and bone tissue corrosion. Worsening of the disease condition leads to bone delicacy and fracture. Various drugs are available for the treatment of OP, however they have limitations including poor solubility, bioavailability and toxicity. Herein, Raloxifene-loaded polymeric nanoparticles (RLX-PNPs) were developed and investigated for the treatment of OP with possible solutions to the above mentioned problems. RLX-PNPs were prepared by modified ionic gelation method followed by determining their particle properties. FTIR, DSC and PXRD analysis of the RLX-PNPs were performed to check chemical interaction, thermal behavior and crystallinity, respectively. In-vitro release profile of RLX-PNPs was checked in lab setting, whereas its pharmacokinetics was investigated in Sprague-Dawley rats, in-vivo. Finally, the treatment potential of RLX-PNPs was analyzed in OP induced animal model. The optimized PNPs formulation indicated 134.5 nm particle size, +24.4 mV charge and 91.73% % EE. TEM analysis showed spherical and uniform sized particles with no interactions observed in FTIR analysis. In-vitro release of RLX from RLX-PNPs showed more sustained release behavior as compared to RLX-suspension. Moreover, pharmacokinetic investigations showed a significantly enhanced bioavailability of the RLX-PNPs as well as reduced serum levels of alkaline phosphatase and calcium in OP induced rats when compared with RLX-Suspension after oral administration. Findings of this study suggested that the developed RLX-PNPs have the potential to treat OP due to sustained release and improved bioavailability of the incorporated drug.
Collapse
Affiliation(s)
- Zhonghua Guo
- Department of Orthopaedics, Henan Province Hospital of TCM, Zhengzhou City, Henan Province, 450002, China
| | - Rabia Afza
- Department of Botany, Hazara University Mansehra KP, Pakistan
| | - Muhammad Moneeb Khan
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Saif Ullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsada, KPK, Pakistan
| | - Muhammad Waseem Khan
- Institute of Pharmaceutical Sciences Khyber Medical University, Peshawar, Pakistan
| | - Zakir Ali
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Sibgha Batool
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Fakhar ud Din
- Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320, Islamabad, Pakistan
| |
Collapse
|
9
|
Jiao X, Dong X, Shan H, Qin Z. Assessing the Efficacy of PLGA-Loaded Antimicrobial Peptide OH-CATH30 Microspheres for the Treatment of Bacterial Keratitis: A Promising Approach. Biomolecules 2023; 13:1244. [PMID: 37627308 PMCID: PMC10452858 DOI: 10.3390/biom13081244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial keratitis in animals presents challenges due to ocular structural barriers, hindering effective drug delivery. In this study, we used biocompatible and biodegradable poly(lactic-co-glycolic acid) (PLGA) to encapsulate the naturally occurring antimicrobial peptide OH-CATH30, an alternative to conventional antibiotics, for the treatment of bacterial keratitis in animals. Microspheres (MS) were prepared using a modified water-in-oil-in-water (W/O/W) double-emulsion method with optimized osmotic pressure. We conducted comprehensive evaluations, including in vitro characterization, encapsulation efficiency determination, in vitro release kinetics, and in vivo/vitro assessments of irritation and bacterial inhibition. The optimized method yielded microspheres with impressive encapsulation efficiency of 75.2 ± 3.62% and a loading capacity of 18.25 ± 5.73%, exhibiting a well-defined particle size distribution (200-1000 nm) and a ζ-potential of -17.3 ± 1.91 mV. The microspheres demonstrated initial burst release followed by sustained and controlled release in vitro. Both in vitro and in vivo tolerance tests confirmed the biocompatibility of the drug-loaded microspheres, as they did not elicit significant irritation in ocular tissues. Remarkable antibacterial effects were observed in both in vitro and in vivo experiments. Our developed PLGA microspheres show promise as an alternative therapeutic option for topical administration in managing keratitis, offering exceptional drug delivery capabilities, improved bioavailability, and potent antibacterial efficacy.
Collapse
Affiliation(s)
| | | | | | - Zhihua Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (X.J.); (X.D.); (H.S.)
| |
Collapse
|
10
|
Choi MJ, Woo MR, Baek K, Park JH, Joung S, Choi YS, Choi HG, Jin SG. Enhanced Oral Bioavailability of Rivaroxaban-Loaded Microspheres by Optimizing the Polymer and Surfactant Based on Molecular Interaction Mechanisms. Mol Pharm 2023; 20:4153-4164. [PMID: 37433746 DOI: 10.1021/acs.molpharmaceut.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
This study aimed to develop microspheres using water-soluble carriers and surfactants to improve the solubility, dissolution, and oral bioavailability of rivaroxaban (RXB). RXB-loaded microspheres with optimal carrier (poly(vinylpyrrolidone) K30, PVP) and surfactant (sodium lauryl sulfate (SLS)) ratios were prepared. 1H NMR and Fourier transform infrared (FTIR) analyses showed that drug-excipient and excipient-excipient interactions affected RXB solubility, dissolution, and oral absorption. Therefore, molecular interactions between RXB, PVP, and SLS played an important role in improving RXB solubility, dissolution, and oral bioavailability. Formulations IV and VIII, containing optimized RXB/PVP/SLS ratios (1:0.25:2 and 1:1:2, w/w/w), had significantly improved solubility by approximately 160- and 86-fold, respectively, compared to RXB powder, with the final dissolution rates improved by approximately 4.5- and 3.4-fold, respectively, compared to those of RXB powder at 120 min. Moreover, the oral bioavailability of RXB was improved by 2.4- and 1.7-fold, respectively, compared to that of RXB powder. Formulation IV showed the highest improvement in oral bioavailability compared to RXB powder (AUC, 2400.8 ± 237.1 vs 1002.0 ± 82.3 h·ng/mL). Finally, the microspheres developed in this study successfully improved the solubility, dissolution rate, and bioavailability of RXB, suggesting that formulation optimization with the optimal drug-to-excipient ratio can lead to successful formulation development.
Collapse
Affiliation(s)
- Min-Jong Choi
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Kyungho Baek
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, Seoul 03760, South Korea
| | - Seewon Joung
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea
| |
Collapse
|
11
|
Milano F, Masi A, Madaghiele M, Sannino A, Salvatore L, Gallo N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051499. [PMID: 37242741 DOI: 10.3390/pharmaceutics15051499] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 113, 73021 Calimera, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
12
|
Maqsood S, Din FU, Khan SU, Elahi E, Ali Z, Jamshaid H, Zeb A, Nadeem T, Ahmad W, Khan S, Choi HG. Levosulpiride-loaded nanostructured lipid carriers for brain delivery with antipsychotic and antidepressant effects. Life Sci 2022; 311:121198. [DOI: 10.1016/j.lfs.2022.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
13
|
Imran B, Din FU, Ali Z, Fatima A, Khan MW, Kim DW, Malik M, Sohail S, Batool S, Jawad M, Shabbir K, Zeb A, Khan BA. Statistically designed dexibuprofen loaded solid lipid nanoparticles for enhanced oral bioavailability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Ouyang H, Hu J, Qiu X, Wu S, Guo F, Tan Y. Improved biopharmaceutical performance of antipsychotic drug using lipid nanoparticles via intraperitoneal route. Pharm Dev Technol 2022; 27:853-863. [PMID: 36124550 DOI: 10.1080/10837450.2022.2124521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study aims to develop, characterize, and examine olanzapine-loaded solid lipid nanocarriers (OLAN-SLNs) for effective brain delivery. OLAN has poor water solubility and low penetration through blood-brain barrier (BBB). Herein, OLAN-SLNs were fabricated using high-pressure homogenization (HPH) method followed by their investigation for particle properties. Moreover, in vitro release and in vivo pharmacokinetics profiles of OLAN-SLNs were compared with pure drug. Anti-psychotic activity was performed in LPS-induced psychosis mice model. Furthermore, expressions of the COX-2 and NF-κB were measured trailed by histopathological examination. The optimized formulation demonstrated nanoparticle size (149.1 nm) with rounded morphology, negative zeta potential (-28.9 mV), lower PDI (0.334), and excellent entrapment efficiency (95%). OLAN-SLNs significantly retarded the drug release and showed sustained release pattern as compared to OLAN suspension. Significantly enhanced bioavailability (ninefold) was demonstrated in OLAN-SLNs when compared with OLAN suspension. Behavioral tests showed significantly less immobility and more struggling time in OLAN-SLNs treated mice group. Additionally, reduced expression of COX-2 and -NF κB in brain was found. Altogether, it can be concluded that SLNs have the potential to deliver active pharmaceutical ingredients to brain, most importantly to enhance their bioavailability and antipsychotic effect, as indicated for OLAN in this study.
Collapse
Affiliation(s)
- Hezhong Ouyang
- Department of Neurology, The People's Hospital of Danyang, Danyang, China
| | - Jinquan Hu
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - XingYing Qiu
- Department of Neurology, People's Liberation Army Joint Support Force 900th Hospital, Cangshan Hospital District, Fuzhou, China
| | - Shaochang Wu
- Department of Geriatrics, The Second People's Hospital of LiShui, Lishui, China
| | - Fudong Guo
- Department of Neurology, Affiliated Hospital of Chifeng University, Chifeng city, China
| | - Youguo Tan
- Department of Psychiatry, Zigong Mental health Centre, Zigong, China
| |
Collapse
|
15
|
Effects of Polymers on the Drug Solubility and Dissolution Enhancement of Poorly Water-Soluble Rivaroxaban. Int J Mol Sci 2022; 23:ijms23169491. [PMID: 36012748 PMCID: PMC9409000 DOI: 10.3390/ijms23169491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/20/2022] [Indexed: 01/12/2023] Open
Abstract
The purpose of this study was to investigate the efficacy of hydrophilic polymers in a solid dispersion formulation in improving the solubility and dissolution rate of rivaroxaban (RXB), a poorly soluble drug. The developed solid dispersion consisted of two components, a drug and a polymer, and the drug was dispersed as amorphous particles in a polymer matrix using the spray drying method. Polymeric solid dispersions were evaluated using solubility tests, in vitro dissolution tests, powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and particle size distribution analysis. To maximize physical stability against crystallization and improve the solubility and dissolution of RXB, it is important to select the appropriate polymer type and the optimal ratio of the polymer to the drug. The optimized polyvinyl alcohol (PVA)-based (1/0.5, w/w) and gelatin-based (1/5, w/w) solid dispersion formulations showed 6.3 and 3.6 times higher drug solubilities than pure RXB powder, respectively, and the final dissolution rate was improved by approximately 1.5 times. Scanning electron microscopy and particle size distribution analyses confirmed that the gelatin-based solid dispersion was smaller and more spherical than the PVA-based solid dispersion, suggesting that the gelatin-based solid dispersion had a faster initial dissolution rate. Differential scanning calorimetry and powder X-ray diffraction analyses confirmed that RXB had successfully changed from a crystalline form to an amorphous form, contributing to the improvement in its solubility and dissolution rate. This study provides a strategy for selecting suitable polymers for the development of amorphous polymer solid dispersions that can overcome precipitation during dissolution and stabilization of the amorphous state. In addition, the selected polymer solid dispersion improved the drug solubility and dissolution rate of RXB, a poorly soluble drug, and may be used as a promising drug delivery system.
Collapse
|
16
|
Wang H, Hu H, Zhang X, Zheng L, Ruan J, Cao J, Zhang X. Preparation, Physicochemical Characterization, and Antioxidant Activity of Naringin–Silk Fibroin–Alginate Microspheres and Application in Yogurt. Foods 2022; 11:foods11142147. [PMID: 35885390 PMCID: PMC9318321 DOI: 10.3390/foods11142147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Naringin is the major polyphenol in bitter orange peel with antioxidant property. However, its pH sensitivity, low solubility, and bitter taste limit its application in food. In this study, naringin–sodium alginate–silk fibroin microspheres were prepared by the ionic gel method. The loading capacity and encapsulation efficiency of naringin in microspheres were 13.2% and 77.6%, respectively. The morphology of microspheres was characterized by scanning electron microscopy. The X-ray diffractometry and differential scanning calorimetry results showed naringin was amorphous after encapsulation. Fourier-transform infrared spectroscopy and molecular docking analysis confirmed the intermolecular hydrogen bonds between naringin and sodium alginate. Naringin could release from the microspheres continuously under different pH conditions. Compared with free naringin, the 2,2-diphenyl-1-picrylhydrazyl scavenging activity and the stability of naringin microspheres were significantly improved. The application of naringin microspheres in yogurt indicated the precipitation of whey could be effectively reduced and the decline rate of pH was inhibited. The study suggested that naringin encapsulated microspheres were beneficial for improving the shelf life of this bioactive product as well as providing a new idea for functional yogurt.
Collapse
|
17
|
Mushtaq A, Baseer A, Zaidi SS, Waseem Khan M, Batool S, Elahi E, Aman W, Naeem M, Din FU. Fluconazole-loaded thermosensitive system: In vitro release, pharmacokinetics and safety study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Kim W, Kim JS, Choi HG, Jin SG, Cho CW. Novel ezetimibe-loaded fibrous microparticles for enhanced solubility and oral bioavailability by electrospray technique. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Khan MA, Ansari MM, Arif ST, Raza A, Choi HI, Lim CW, Noh HY, Noh JS, Akram S, Nawaz HA, Ammad M, Alamro AA, Alghamdi AA, Kim JK, Zeb A. Eplerenone nanocrystals engineered by controlled crystallization for enhanced oral bioavailability. Drug Deliv 2021; 28:2510-2524. [PMID: 34842018 PMCID: PMC8635601 DOI: 10.1080/10717544.2021.2008051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Poor aqueous solubility of eplerenone (EPL) is a major obstacle to achieve sufficient bioavailability after oral administration. In this study, we aimed to develop and evaluate eplerenone nanocrystals (EPL-NCs) for solubility and dissolution enhancement. D-optimal combined mixture process using Design-Expert software was employed to generate different combinations for optimization. EPL-NCs were prepared by a bottom-up, controlled crystallization technique during freeze-drying. The optimized EPL-NCs were evaluated for their size, morphology, thermal behavior, crystalline structure, saturation solubility, dissolution profile, in vivo pharmacokinetics, and acute toxicity. The optimized EPL-NCs showed mean particle size of 46.8 nm. Scanning electron microscopy revealed the formation of elongated parallelepiped shaped NCs. DSC and PXRD analysis confirmed the crystalline structure and the absence of any polymorphic transition in EPL-NCs. Furthermore, EPL-NCs demonstrated a 17-fold prompt increase in the saturation solubility of EPL (8.96 vs. 155.85 µg/mL). The dissolution rate was also significantly higher as indicated by ∼95% dissolution from EPL-NCs in 10 min compared to only 29% from EPL powder. EPL-NCs improved the oral bioavailability as indicated by higher AUC, Cmax, and lower Tmax than EPL powder. Acute oral toxicity study showed that EPL-NCs do not pose any toxicity concern to the blood and vital organs. Consequently, NCs prepared by controlled crystallization technique present a promising strategy to improve solubility profile, dissolution velocity and bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Muhammad Ayub Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Abida Raza
- Nanomedicine Research Laboratory, National Institute of Lasers and Optronics (NILOP), PIEAS, Islamabad, Pakistan
| | - Ho-Ik Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Chang-Wan Lim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Ha-Yeon Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Jin-Su Noh
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Salman Akram
- Laboratory for the Study of Rheology and the Adhesion of Medical Adhesives, IPREM, University of Pau and Pays de l'Adour, Pau, France
| | - Hafiz Awais Nawaz
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amani Ahmed Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
20
|
Cho YS, Kim S, Kim YK, Jin SG, Park JH. Resveratrol-β-Lactoglobulin Composite Nanocoating by Layer-by-Layer Assembly with Fe(III)-Tannic Acid Complex. Chem Asian J 2021; 16:3636-3639. [PMID: 34581017 DOI: 10.1002/asia.202100923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Resveratrol (3,4',5-trihydroxystilbene) is beneficial to human health due to its diverse biological activities including its anti-inflammatory and anti-oxidative effects as confirmed by pharmacokinetic tests. Despite these clinical merits, resveratrol's limited hydrosolubility and chemical vulnerability remain challenging with regard to developing a controlled delivery system with enhanced bioavailability. In this work, we report a resveratrol-β-lactoglobulin (R-BLG) composite nanocoating through a layer-by-layer assembly with Fe(III)-tannic acid nanofilms. The R-BLG composite nanocoating can be formed in planar and particulate substrates, showing excellent film stability under a broad range of pH values and against enzymatic digestion during a weeklong incubation. We envision that the proteinaceous nanocoating herein could be combined with existing pharmaceutical carrier materials (e. g., microcapsules and nanoparticles) to realize advanced drug delivery systems with an expanded repertoire of hydrophobic drugs.
Collapse
Affiliation(s)
- Yeon Seo Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan
| | - Seulbi Kim
- Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul
| | - Young-Kwan Kim
- Department of Chemistry, Dongguk University-Seoul, 30 Pildong-ro, Jung-gu, Seoul
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan
| | - Ji Hun Park
- Department of Science Education, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul
| |
Collapse
|
21
|
Kim JS, Din FU, Lee SM, Kim DS, Woo MR, Cheon S, Ji SH, Kim JO, Youn YS, Oh KT, Lim SJ, Jin SG, Choi HG. Comparison of Three Different Aqueous Microenvironments for Enhancing Oral Bioavailability of Sildenafil: Solid Self-Nanoemulsifying Drug Delivery System, Amorphous Microspheres and Crystalline Microspheres. Int J Nanomedicine 2021; 16:5797-5810. [PMID: 34465992 PMCID: PMC8402991 DOI: 10.2147/ijn.s324206] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background The purpose of this study was to screen various drug delivery systems for improving the aqueous solubility and oral bioavailability of sildenafil. Three representative techniques, solid self-nanoemulsifying drug delivery systems (SNEDDS), amorphous microspheres and crystalline microspheres, were compared. Methods Both microspheres systems contained sildenafil:Labrasol:PVP at a weight ratio of 1:1:6. The amorphous microspheres were manufactured using ethanol, while crystalline microspheres were generated using distilled water. Liquid SNEDDS was composed of sildenafil:Labrasol:Transcutol HP:Captex 300 in the ratio of 1:70:15:15 (w:w:w:w). The solidification process in SNEDDS was performed using HDK N20 Pharma as a solid carrier. Results The amorphous microspheres appeared spherical with significantly decreased particle size compared to the drug powder. The crystalline microspheres exhibited a rough surface with no major particle-size difference compared with sildenafil powder, indicating that the hydrophilic excipients adhered to the sildenafil crystal. Solid SNEDDS presented a smooth surface, assuming that the oily liquid was adsorbed to the porous solid carrier. According to the physicochemical evaluation, the crystalline state maintained in crystalline microspheres, whereas the crystal state changed to amorphous state in other formulations. Amorphous microspheres, crystalline microspheres and solid SNEDDS produced about 79, 55, 82-fold increased solubility, compared to drug powder. Moreover, the prepared formulations provided a higher dissolution rate (%) and plasma concentration than did the drug powder (performance order; solid SNEDDS ≥ amorphous microspheres ≥ crystalline microspheres > drug powder). Among the formulations, solid SNEDDS demonstrated the highest improvement in oral bioavailability (AUC; 1508.78 ± 343.95 h·ng/mL). Conclusion Therefore, solid SNEDDS could be recommended as an oral dosage form for enhancing the oral bioavailability of sildenafil.
Collapse
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sang Min Lee
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Dong Shik Kim
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | | | - Sang Hun Ji
- College of Pharmacy, Hanyang University, Ansan, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyongsan, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Soo-Jeong Lim
- Department of Bioscience and biotechnology, Sejong University, Seoul, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, South Korea
| |
Collapse
|
22
|
Kim JS, Cho JH, Choi H. Development of a Simple, Precise, and Validated
HPLC
Method for the Anticancer Drug, Regorafenib: Application to Pharmacokinetics in Rats and Stability Study. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and Technology Hanyang University Ansan 15588 Republic of Korea
| | - Jung Hyun Cho
- College of Pharmacy & Institute of Pharmaceutical Science and Technology Hanyang University Ansan 15588 Republic of Korea
| | - Han‐Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology Hanyang University Ansan 15588 Republic of Korea
| |
Collapse
|
23
|
Liu H, Zhang Z, Li J, Zang W, Yang Q, Yang J. Fabrication of gelatin microspheres containing ammonium hydrogen carbonate for the tunable release of herbicide. Biotechnol Lett 2021; 43:1747-1755. [PMID: 34275026 DOI: 10.1007/s10529-021-03163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
The major challenge in utilizing pesticides lies in identifying the precise application that would improve the efficiency of these pesticides and decline their environmental and health hazards at the same time. Such application requires the development of specific formulations that enable controlled, stimuli-responsive release of the pesticides. Gelatin is a relatively cheap material characterized by temperature-sensitivity and abundant amino acid groups, which makes it suitable for the storage and controlled release of pesticides. In this study, gelatin microspheres were prepared by emulsion and cross-linking, then they were loaded with 2,4-dichlorophenoxyacetic acid sodium (2,4-D Na) as a model herbicide. To achieve temperature-tunable release of 2,4-D Na from the microspheres, NH4HCO3 was added to the formulations at different concentrations. The prepared formulations were characterized by SEM, FTIR, and size distribution analyzes, and their drug loading capacities were determined. Based on bioassay experiments, the 2,4-D Na-NH4HCO3-loaded gelatin microspheres can effectively control the spread of dicotyledonous weeds. Therefore, the strategy proposed herein can be used to develop novel, effective herbicide formulations.
Collapse
Affiliation(s)
- He Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiaxin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Wanyu Zang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jun Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
24
|
Zhang Z, Pan Y, Zhao Y, Ren M, Li Y, Lu G, Wu K, He S. Topotecan-loaded thermosensitive nanocargo for tumor therapy: In vitro and in vivo analyses. Int J Pharm 2021; 606:120871. [PMID: 34246742 DOI: 10.1016/j.ijpharm.2021.120871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 01/09/2023]
Abstract
This study demonstrates the development of topotecan (TCN) loaded thermosensitive nanocargos (TCN-TS-NC) for intramuscular (IM) administration with enhanced antitumor activity. In this regards, TCN loaded temperature dependent solid lipid nanoparticles (SLNs) were prepared with micro-emulsion method, which were then incorporated into temperature sensitive poloxamer solution to develop TCN-TS-NC. The particle size, entrapment efficiency (%EE), zeta potential and transmission electron microscopy (TEM) analysis of the TCN-TS-NC were performed. Moreover, the inject-ability, release pattern, apoptosis, cellular uptake, pharmacokinetics and antitumor studies of the TCN-TS-NC were attained and compared with TCN solution and TCN-Emulgel (poloxamer solution containing TCN). At room temperature, the TCN loaded SLNs were solid and poloxamer solution remains liquid, however, TCN loaded SLNs melted to liquid and Emulgel converted into gel from, at body temperature, resulting controlled release of the incorporated drug. The TCN-TS-NC showed enhanced cellular uptake and better apoptosis. Similarly, it reduces Cmax and sustained its level for a significantly longer time in rats, as compared to the TCN-Emulgel and TCN solution. Moreover, a significantly improved antitumor activity was observed in TCN-TS-NC treated tumor bearing athymic nude mice when compared with the control, TCN solution and TCN-Emulgel applied mice. Thus, the TCN-TS-NC system showed control release of the drug with no initial fast effect. Furthermore, it enhanced the antitumor activity of TCN with comparatively no toxicity. It is therefore concluded that TCN-TS-NC could be a potentially more suitable drug delivery system for the delivery of TCN.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yan Pan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Yan Zhao
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Mudan Ren
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yarui Li
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Guifang Lu
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| |
Collapse
|
25
|
Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv 2021; 28:1397-1418. [PMID: 34184949 PMCID: PMC8248937 DOI: 10.1080/10717544.2021.1938756] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biodegradable microspheres have been widely used in the field of medicine due to their ability to deliver drug molecules of various properties through multiple pathways and their advantages of low dose and low side effects. Poly (lactic-co-glycolic acid) copolymer (PLGA) is one of the most widely used biodegradable material currently and has good biocompatibility. In application, PLGA with a specific monomer ratio (lactic acid and glycolic acid) can be selected according to the properties of drug molecules and the requirements of the drug release rate. PLGA-based biodegradable microspheres have been studied in the field of drug delivery, including the delivery of various anticancer drugs, protein or peptide drugs, bacterial or viral DNA, etc. This review describes the basic knowledge and current situation of PLGA biodegradable microspheres and discusses the selection of PLGA polymer materials. Then, the preparation methods of PLGA microspheres are introduced, including emulsification, microfluidic technology, electrospray, and spray drying. Finally, this review summarizes the application of PLGA microspheres in drug delivery and the treatment of pulmonary and ocular-related diseases.
Collapse
Affiliation(s)
- Yue Su
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Bolun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang, China
| | | | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
26
|
Ko DW, Cho JH, Choi HG. Development of rebamipide-loaded spray-dried microsphere using distilled water and meglumine: physicochemical characterization and pharmacokinetics in rats. Pharm Dev Technol 2021; 26:701-708. [PMID: 33938359 DOI: 10.1080/10837450.2021.1924781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, a novel rebamipide-loaded spray-dried microsphere (RSM) with enhanced drug solubility and oral bioavailability has been developed utilizing meglumine, an alkalizing agent. The influence of carriers on the drug solubility alone, and the solubility and dissolution of the drug in the RSM was investigated. Among the alkalizing agents and hydrophilic polymers tested, meglumine and polyvinyl alcohol (PVA) showed the highest drug solubility and dissolution rate, respectively. Many RSMs were manufactured with various amounts of meglumine and PVA using distilled water, and their drug solubility and dissolution were determined. The physicochemical properties, dissolution and pharmacokinetics of the chosen RSM in rats were assessed compared to the rebamipide powder and commercial tablet. Among the RSMs tested, the one composed of rebamipide, meglumine and PVA at a weight ratio of 3:1.75:6 showed the highest drug solubility and dissolution. This RSM with a smooth spherical form significantly decreased the particle size and modified the amorphous rebamipide. Furthermore, the drug solubility, dissolution, plasma concentrations, AUC and Cmax values of RSM were significantly higher than those of drug powder and commercial tablet. Thus, this RSN system developed with distilled water and meglumine is recommended as an oral water-soluble rebamipide-loaded pharmaceutical product.
Collapse
Affiliation(s)
- Dae Woong Ko
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea
| | - Jung Hyun Cho
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea
| |
Collapse
|
27
|
Goo YT, Sa CK, Choi JY, Kim MS, Kim CH, Kim HK, Choi YW. Development of a Solid Supersaturable Micelle of Revaprazan for Improved Dissolution and Oral Bioavailability Using Box-Behnken Design. Int J Nanomedicine 2021; 16:1245-1259. [PMID: 33633449 PMCID: PMC7901570 DOI: 10.2147/ijn.s298450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/23/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To enhance the oral bioavailability of revaprazan (RVP), a novel solid, supersaturable micelle (SSuM) was developed. METHODS Surfactants and solid carriers were screened based on a solubility and a flowability test, respectively. Supersaturating agents, including Poloxamer 407 (P407), were screened. The SSuM was optimized using a Box-Behnken design with three independent variables, including Gelucire 44/14:Brij L4 (G44/BL4; X1) and the amounts of Florite PS-10 (FLO; X2) and Vivapur 105 (VP105; X3), and three response variables, ie, dissolution efficiency at 30 min (Y1), dissolution enhancing capacity (Y2), and Carr's index (Y3). The solid state property was evaluated, and a dissolution test was conducted. RVP, Revanex®, solid micelle (P407-free from the composition of SSuM), and SSuM were orally administrated to rats (RVP 20 mg equivalent/kg) for in vivo pharmacokinetic study. RESULTS G44 and BL4 showed great solubility, with a critical micelle concentration range of 119.2-333.0 μg/mL. P407 had an excellent supersaturating effect. FLO and VP105 were selected as solid carriers, with a critical solidifying ratio (g/mL) of 0.30 and 0.91, respectively. With optimized values of X1 (-0.41), X2 (0.31), and X3 (-0.78), RVP (200 mg)-containing SSuM consisting of G44 (253.8 mg), BL4 (106.2 mg), FLO (99.3 mg), VP105 (199.8 mg), and P407 (40 mg) was developed, resulting in Y1 (40.3%), Y2 (0.008), and Y3 (12.3%). RVP existed in an amorphous state in the optimized SSuM, and the SSuM formed a nanosized dispersion in the aqueous phase, with approximately 71.7% dissolution at 2 h. The optimized SSuM improved the relative bioavailability of RVP in rats by approximately 478%, 276%, and 161% compared to raw RVP, Revanex®, and solid micelle, respectively. CONCLUSION The optimized SSuM has great potential for the development of solidified formulations of poorly water-soluble drugs with improved oral absorption.
Collapse
Affiliation(s)
- Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Cheol-Ki Sa
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Yeh Choi
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Min Song Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Kyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
29
|
Singh Chauhan P, Abutbul Ionita I, Moshe Halamish H, Sosnik A, Danino D. Multidomain drug delivery systems of β-casein micelles for the local oral co-administration of antiretroviral combinations. J Colloid Interface Sci 2021; 592:156-166. [PMID: 33652169 DOI: 10.1016/j.jcis.2020.12.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022]
Abstract
The antiretroviral (ARV) cocktailrevolved the treatment of the human immunodeficiency virus (HIV) infection. Drug combinations have been also tested to treat other infectious diseases, including the recentcoronavirus disease 2019 (COVID-19) outbreak. To simplify administration fixed-dose combinationshave been introduced, however, oral anti-HIV therapy still struggles with low oral bioavailability of many ARVs.This work investigated the co-encapsulation of two clinically relevant ARV combinations,tipranavir (TPV):efavirenz (EFV) anddarunavir (DRV):efavirenz (EFV):ritonavir (RTV),within the core of β-casein (bCN) micelles. Encapsulation efficiency in both systems was ~100%. Cryo-transmission electron microscopy and dynamic light scattering of the ARV-loaded colloidaldispersions indicatefull preservation of the spherical morphology, and x-ray diffraction confirm that the encapsulated drugs are amorphous. To prolong the physicochemical stabilitythe formulations were freeze-driedwithout cryo/lyoprotectant, and successfully redispersed, with minor changes in morphology.Then, theARV-loaded micelles were encapsulated within microparticles of Eudragit® L100, which prevented enzymatic degradation and minimized drug release under gastric-like pH conditionsin vitro. At intestinal pH, the coating polymer dissolved and released the nanocarriers and content. Overall, our results confirm the promise of this flexible and modular technology platform for oral delivery of fixed dose combinations.
Collapse
Affiliation(s)
- Prakram Singh Chauhan
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Inbal Abutbul Ionita
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hen Moshe Halamish
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dganit Danino
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel; Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong Province 515063, China.
| |
Collapse
|
30
|
Zhao L, Mustapha O, Shafique S, Jamshaid T, Din FU, Mehmood Y, Anwer K, Yousafi QUA, Hussain T, Khan IU, Ghori MU, Shahzad Y, Yousaf AM. Electrospun Gelatin Nanocontainers for Enhanced Biopharmaceutical Performance of Piroxicam: In Vivo and In Vitro Investigations. Int J Nanomedicine 2020; 15:8819-8828. [PMID: 33204090 PMCID: PMC7667701 DOI: 10.2147/ijn.s271938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Piroxicam exhibits low oral bioavailability, due to its meager solubility in water. The intent of this study was to ameliorate the bioavailability of the drug by employing a solubility-enhancing encapsulation technique. METHODS Seven samples were formulated with piroxicam and gelatin using both solvent evaporation and electrospraying together. Evaluation of solubility and release rate in water and assessment of bioavailability in rats were carried out in comparison with piroxicam plain drug powder (PPDP). Other in vitro explorations were accomplished using powder X-ray diffraction analysis, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and Fourier-transform infrared spectroscopy. RESULTS All piroxicam-loaded gelatinnanocontainers (PLGNs) enhanced solubility and release of the payload in water. In particular, a PLGN formulation consisting of piroxicam and gelatin at a 1:8 (w:w) ratio presented about 600-fold the drug solubility of that shown by PPDP. Moreover, 85.12%±10.96% of the payload was released from this formulation in 10 minutes which was significantly higher than that dissolved from PPDP in 10 minutes (11.81%±5.34%). Drug content, drug loading, and encapsulation efficiency of this formulation were 93.41%±0.56%, 10.45%±0.06%, and 66.74%±6.87%, respectively. The drug loaded in PLGNs existed in the amorphous state, as confirmed by X-ray diffraction and differential scanning-calorimetry analyses, and was more stable when analyzed by thermogravimetric analysis. Moreover, Fourier-transform infrared spectroscopy analysis suggested nonexistence of any piroxicam-gelatin interaction in the formulation. In the scanning electron-microscopy image, PLGNs appeared as round, smooth particles, with particle size of <1,000 nm. Amelioration in bioavailability of piroxicam with the aforementioned PLGN formulation was fourfold that of PPDP. CONCLUSION The PLGN formulation fabricated with piroxicam and gelatin at 1:8 (w:w) might be a promising system for enhanced biopharmaceutical performance of the drug.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Rheumatology of Traditional Chinese and Western Medicine, Xinxiang Central Hospital, Xinxiang453000, People’s Republic of China
| | - Omer Mustapha
- Faculty of Pharmaceutical Sciences, Dow College of Pharmacy, Dow University of Health Sciences, Karachi74200, Pakistan
| | - Shumaila Shafique
- Faculty of Pharmaceutical Sciences, Dow College of Pharmacy, Dow University of Health Sciences, Karachi74200, Pakistan
| | - Talha Jamshaid
- Faculty of Pharmacy and Alternative Medicine, Islamia University of Bahawalpur, Bahawalpur63100, Pakistan
| | - Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad45320, Pakistan
| | - Yasir Mehmood
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad38040, Pakistan
| | - Khaleeq Anwer
- Office of Chief Executive Officer, District Health Authority, Pakpattan57400, Pakistan
| | - Qurrat ul Ain Yousafi
- Department of Neurosurgery, District Headquarters Hospital, Rawalpindi46000, Pakistan
| | - Talib Hussain
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore54000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad38040, Pakistan
| | - Muhammad Usman Ghori
- Department of Pharmacy, School of Applied Science, University of Huddersfield, HuddersfieldHD1 3DH, UK
| | - Yasser Shahzad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore54000, Pakistan
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore54000, Pakistan
| |
Collapse
|
31
|
Kim JS, Ud Din F, Lee SM, Kim DS, Choi YJ, Woo MR, Kim JO, Youn YS, Jin SG, Choi HG. Comparative study between high-pressure homogenisation and Shirasu porous glass membrane technique in sildenafil base-loaded solid SNEDDS: Effects on physicochemical properties and in vivo characteristics. Int J Pharm 2020; 592:120039. [PMID: 33152479 DOI: 10.1016/j.ijpharm.2020.120039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023]
Abstract
The purpose of this study was to compare two types of emulsification techniques in a solid self-nanoemulsifying drug delivery system (SNEDDS); high-pressure homogenisation (HPH) and Shirasu porous glass membrane (SPG). Those two emulsification processes enhanced the solubility, dissolution and oral bioavailability of poorly water-soluble sildenafil base (SB) by producing fine and well-dispersed nanoemulsion droplet. The liquid SNEDDS consisting of Labrasol/Transcutol HP/coconut oil at the weight of 72/18/10, gave the smallest emulsion droplet size among the prepared liquid SNEDDS formulations. Then, the SB-loaded liquid SNEDDS was dissolved in the deionised water and applied to HPH or SPG techniques. Aerosil 200 was suspended as a mesoporous carrier and spray-dried, producing an SB-loaded solid SNEDDS. The emulsion droplet size, solubility and dissolution of each emulsification process were compared to the solid SNEDDS fabricated without any treatment of additional emulsification. Moreover, the physicochemical properties of all formulations were compared. The crystalline state of the drug in all products was converted to the amorphous state. The solid SNEDDS, subjected to HPH technique, provided fine and well-dispersed nanoemulsion. Additionally, it increasingly improved the drug solubility and dissolution as compared to the others, including SB powder, non-treated (NT) and SPG. Furthermore, it gave improved Cmax and increased AUC compared to SB powder and SPG, indicating HPH enhanced the oral bioavailability of SB the most. Thus, this solid SNEDDS with HPH would be strongly suggested as an oral SB-loaded pharmaceutical product.
Collapse
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Sang Min Lee
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Dong Shik Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Yoo Jin Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 712-749, South Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, South Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, South Korea.
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, South Korea.
| |
Collapse
|
32
|
Application of gelatin nanoconjugates as potential internal stimuli-responsive platforms for cancer drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Fang Q, Yao Z, Feng L, Liu T, Wei S, Xu P, Guo R, Cheng B, Wang X. Antibiotic-loaded chitosan-gelatin scaffolds for infected seawater immersion wound healing. Int J Biol Macromol 2020; 159:1140-1155. [DOI: 10.1016/j.ijbiomac.2020.05.126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
|
34
|
Molavi F, Barzegar-Jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. J Control Release 2020; 320:265-282. [DOI: 10.1016/j.jconrel.2020.01.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
|
35
|
Khaleeq N, Din FU, Khan AS, Rabia S, Dar J, Khan GM. Development of levosulpiride-loaded solid lipid nanoparticles and their in vitro and in vivo comparison with commercial product. J Microencapsul 2020; 37:160-169. [PMID: 31916886 DOI: 10.1080/02652048.2020.1713242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aim of this study was to develop levosulpiride-loaded solid lipid nanoparticles (SLNs) with enhanced solubilisation and bioavailability. The levosulpiride loaded-SLNs were composed of levosulpiride, stearic acid, and tween 80 in their respective weight ratios of (1, 5, and 1.5 mg) dissolved in 1 ml distilled water. Physicochemical properties of the SLNs such as particle size, shape, crystallinity, and chemical interaction were evaluated. Further, the in vitro drug dissolution, pharmacokinetic and stability studies of the SLNs were performed. The SLNs were rounded shaped stable nanoparticles with average diameter of 200 nm. They demonstrate 1.5- and 3-fold better drug dissolution when compared with the commercial product and levosulpiride powder, respectively. The SLNs enhanced the bioavailability of levosulpiride 3 times and 7 times, respectively, when compared with the commercial product and levosulpiride powder. It can be concluded that SLNs are capable to improve the dissolution and bioavailability of levosulpiride, even more than the commercial product.
Collapse
Affiliation(s)
- Nadra Khaleeq
- Department of Pharmacy, Faculty of biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fakhar-Ud Din
- Department of Pharmacy, Faculty of biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anam Sajjad Khan
- Department of Pharmacy, Faculty of biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Samreen Rabia
- Department of Pharmacy, Faculty of biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Junaid Dar
- Department of Pharmacy, Faculty of biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Gul Majid Khan
- Department of Pharmacy, Faculty of biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
36
|
Dugalic P, Djuranovic S, Pavlovic-Markovic A, Dugalic V, Tomasevic R, Gluvic Z, Obradovic M, Bajic V, Isenovic ER. Proton Pump Inhibitors and Radiofrequency Ablation for Treatment of Barrett's Esophagus. Mini Rev Med Chem 2020; 20:975-987. [PMID: 31644405 DOI: 10.2174/1389557519666191015203636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Gastroesophageal Reflux Disease (GERD) is characterized by acid and bile reflux in the distal oesophagus, and this may cause the development of reflux esophagitis and Barrett's oesophagus (BE). The natural histological course of untreated BE is non-dysplastic or benign BE (ND), then lowgrade (LGD) and High-Grade Dysplastic (HGD) BE, with the expected increase in malignancy transfer to oesophagal adenocarcinoma (EAC). The gold standard for BE diagnostics involves high-resolution white-light endoscopy, followed by uniform endoscopy findings description (Prague classification) with biopsy performance according to Seattle protocol. The medical treatment of GERD and BE includes the use of proton pump inhibitors (PPIs) regarding symptoms control. It is noteworthy that long-term use of PPIs increases gastrin level, which can contribute to transfer from BE to EAC, as a result of its effects on the proliferation of BE epithelium. Endoscopy treatment includes a wide range of resection and ablative techniques, such as radio-frequency ablation (RFA), often concomitantly used in everyday endoscopy practice (multimodal therapy). RFA promotes mucosal necrosis of treated oesophagal region via high-frequency energy. Laparoscopic surgery, partial or total fundoplication, is reserved for PPIs and endoscopy indolent patients or in those with progressive disease. This review aims to explain distinct effects of PPIs and RFA modalities, illuminate certain aspects of molecular mechanisms involved, as well as the effects of their concomitant use regarding the treatment of BE and prevention of its transfer to EAC.
Collapse
Affiliation(s)
- Predrag Dugalic
- Department of Gastroenterology and Hepatology, University Clinical-Hospital Centre Zemun-Belgrade, Belgrade, Serbia
| | - Srdjan Djuranovic
- Clinical Centre of Serbia, Clinic for Gastroenterology and Hepatology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Pavlovic-Markovic
- Clinical Centre of Serbia, Clinic for Gastroenterology and Hepatology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Dugalic
- Clinical Centre of Serbia, Clinic for Surgery, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ratko Tomasevic
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Belgrade, University Clinical-Hospital Centre Zemun-Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, University Clinical-Hospital Centre Zemun-Belgrade, Belgrade, Serbia
| | - Milan Obradovic
- Department of Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Vladan Bajic
- Department of Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinca, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Cho JH, Choi HG. Development of novel tenofovir disoproxil phosphate salt with stability enhancement and bioequivalence to the commercial tenofovir disoproxil fumarate salt in rats and beagle dogs. Int J Pharm 2019; 576:118957. [PMID: 31843551 DOI: 10.1016/j.ijpharm.2019.118957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 11/19/2022]
Abstract
Tenofovir disoproxil (TD) is very unstable in the solid state under storage conditions. Moreover, tenofovir disoproxil fumarate (TDF), a commercial salt, is chemically unstable in alkaline solution. In this study, a novel tenofovir disoproxil phosphate (TDP), with stability enhancement and bioequivalence to commercial TDF in rats and beagle dogs, has been developed as an alternative. The TDP and its tablets were easily manufactured, and its physicochemical properties, such as morphology, crystallinity, solubility, lipophilicity and stability were investigated and compared to TD and TDF. Its dissolution and pharmacokinetics were investigated in rats and beagle dogs in comparison to TD and TDF. TDP appeared as an irregularly-shaped crystalline powder with a rough surface, like TDF. However, TDP significantly improved the solubility (7.4 ± 1.3 vs. 28.6 ± 1.0 mg/ml), hydrophilicity (Log P, 0.58 ± 0.03 vs. 0.47 ± 0.04), and aqueous stability (drug concentration over 12 h at pH 6.8 84.0 ± 2.0% vs. 88.2 ± 1.5%) of TD compared to TDF. The TDP gave no significant different plasma concentrations, AUC and Cmax compared to TDF in rats (AUC, 1242.1 ± 584.9 vs. 825.9 ± 79.5 h·ng/ml; Cmax, 154.8 ± 25.4 vs. 210.9 ± 70.3 ng/ml). Moreover, the TDP-loaded tablets were stable for at least six months and provided similar dissolution and bioequivalence to the TDF-loaded commercial product in beagle dogs (AUC, 26,832.7 ± 4093.0 vs. 26,605.3 ± 2530.1 h·ng/ml; Cmax, 4364.0 ± 2061.9 vs. 4186.3 ± 2616.5 ng/ml). Therefore, as an alternative salt, the TDP would be a recommendable candidate with stability enhancement and bioequivalence to the commercial TDF.
Collapse
Affiliation(s)
- Jung Hyun Cho
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea; Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5, Hwaseong, Gyeonggi-Do 445-913, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea.
| |
Collapse
|