1
|
Singh Y, Ansari AA, Sharma RP, Parhate SM, Singh TR. Product development and characterization of a lipid-based Ayurvedic polyherbal formulation: Kalyanaka Ghrita. J Ayurveda Integr Med 2024; 15:101011. [PMID: 39413551 PMCID: PMC11525137 DOI: 10.1016/j.jaim.2024.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Kalyanaka Ghrita (KG) is polyherbal oleaginous medicament consisting of extracts from twenty-eight different plants, indicated for management of psychosomatic disorders like Unmada (Schizophrenia), Apasmara (Epilepsy) and numerous other ailments. OBJECTIVE To develop and validate standard manufacturing procedure of KG by following Ayurvedic principles in three batches to ensure process uniformity and standards. MATERIALS AND METHODS Three batches of KG were prepared by adopting principles of Ashtanga Hrudya and Ayurvedic Formulary of India to ensure consistency in manufacturing process. Observations during process such as temperature, duration were recorded. KG was subjected to chief desired characteristics, organoleptic (color, odour, taste, texture, touch), physicochemical (acid value, peroxide value, iodine value, saponification value, loss on drying, refractive index, specific gravity, mineral oil, rancidity test, viscosity) as per pharmacopeial standard. Chromatographic screening and fingerprinting of KG were conducted through GCMS whereas quantification of curcumin and chebulagic acid biomarkers were assessed through HPLC. RESULTS Average yield of KG was 83.41%, with average intermittent heating duration of 20.35 h subsequently divided into three days. Temperature throughout preparation ranged from 66 °C to 101 °C. KG was pale olive in colour, exhibiting pleasant taste, characteristic smell, and soft texture. Organoleptic and physicochemical characters were comparable for three batches of KG while safety parameters were found within permissible limits. CONCLUSION Pharmaceutical standardization of Kalyanaka Ghrita is necessary for establishing biological and chemical profile of formulations. Present study recommends use of coarse powdered ingredients for optimal yield during pharmaceutical process, and heating up to Madhyama Paka stage calibrated over three days with average temperature of 85 °C. The data obtained from this study may contribute to future research and development activities, serving as a basis for manufacturing standards of KG.
Collapse
Affiliation(s)
- Yashika Singh
- Department of Rasa Shastra and Bhaishajya Kalpana, National Institute of Ayurveda, Deemed to be University (De-Novo), Jaipur, Rajasthan, India
| | - Amzad Ali Ansari
- Ayurvedic Medical Officer, State Ayurvedic Hospital, Banki Khurd, Ghazipur, Uttar Pradesh, India
| | - Rajendra Prasad Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, National Institute of Ayurveda, Deemed to be University (De-Novo), Jaipur, Rajasthan, India
| | - Saroj Moreshwar Parhate
- Department of Rasa Shastra and Bhaishajya Kalpana, Shri Narayan Prasad Awasthi Government Ayurved College, Raipur, Chhattisgarh, India
| | - Thakur Rakesh Singh
- Department of Rasa Shastra and Bhaishajya Kalpana, National Institute of Ayurveda, Deemed to be University (De-Novo), Jaipur, Rajasthan, India.
| |
Collapse
|
2
|
Kataria D, Singh G. Health benefits of ghee: Review of Ayurveda and modern science perspectives. J Ayurveda Integr Med 2024; 15:100819. [PMID: 38181707 PMCID: PMC10789628 DOI: 10.1016/j.jaim.2023.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 01/07/2024] Open
Abstract
The scientific view on dairy fats is undergoing a change. While at one time they were associated with negative health effects, recent scientific research has provided new insights into the functional benefits of dairy fats and their fatty acids. This changing scientific view on dairy fats is also resulting in a scientific interest in Ghee, the clarified butter obtained from milk. Ghee, besides being a traditional milk product of cultural importance in India and finding extensive use in its cuisines, is also one of the most important ingredients of the materia medica of Ayurveda, the traditional system of medicine that originated in India. While modern scientific literature has limited studies on functional benefits of ghee, Ayurveda literature extensively catalogues the therapeutic potential of ghee and details different types of ghee based on source of milk, manufacturing method, maturation and physical phase. This work reviewed the Ayurveda literature on health benefits of ghee and examined the complementarity and gaps between Ayurveda literature and modern scientific literature to identify research questions and hypotheses for further exploring the therapeutic potential of ghee. The Ayurveda literature review involved curation of references to ghee in eleven important Ayurvedic texts spanning over 3000 years. 4000 references to milk and milk products were curated from these texts, of which 2913 mentions were in the context of therapeutic benefits of milk products. Of these, ghee had 774 mentions, the highest amongst milk-based products. These mentions were grouped into 15 benefit clusters. A review of ghee in modern literature published between 1990 and 2023 was also conducted. A comparison of this with the Ayurveda literature showed that there were major differences in the focus areas of health between the two. While recent research primarily focused on ghee's connection with cardiovascular health, wound healing and skin health, Ayurveda prioritized cognitive benefits, gastrointestinal health, and nourishing. These later areas are of growing importance to human health as global population ages, and chronic and brain related diseases start dominating public health concerns. As scientists search for solutions to these, ghee, its usage and formulations in Ayurveda and the detailed associations between ghee's animal source, processing, maturation, phases and health benefits, may have scientific insights to offer that can guide future research.
Collapse
Affiliation(s)
- Deepshikha Kataria
- Department of Food & Nutrition and Food Technology, Institute of Home Economics, University of Delhi, Delhi, 110016, India; Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, Karnataka, 560064, India
| | - Gurmeet Singh
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology, Bengaluru, Karnataka, 560064, India.
| |
Collapse
|
3
|
Zhang Y, Yang J, Ji Y, Liang Z, Wang Y, Zhang J. Development of Osthole-Loaded Microemulsions as a Prospective Ocular Delivery System for the Treatment of Corneal Neovascularization: In Vitro and In Vivo Assessments. Pharmaceuticals (Basel) 2023; 16:1342. [PMID: 37895813 PMCID: PMC10610237 DOI: 10.3390/ph16101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osthole (OST), a natural coumarin compound, has shown a significant inhibitory effect on corneal neovascularization (CNV). But, its effect on treating CNV is restricted by its water insolubility. To overcome this limitation, an OST-loaded microemulsion (OST-ME) was created to improve the drug's therapeutic effect on CNV after topical administration. The OST-ME formulation comprised Capryol-90 (CP-90), Cremophor® EL (EL-35), Transcutol-P (TSP) and water, and sodium hyaluronate (SH) was also included to increase viscosity. The OST-ME had a droplet size of 16.18 ± 0.02 nm and a low polydispersity index (0.09 ± 0.00). In vitro drug release from OST-ME fitted well to the Higuchi release kinetics model. Cytotoxicity assays demonstrated that OST-ME was not notably toxic to human corneal epithelial cells (HCECs), and the formulation had no irritation to rabbit eyes. Ocular pharmacokinetics studies showed that the areas under the concentration-time curves (AUC0-t) in the cornea and conjunctiva were 19.74 and 63.96 μg/g*min after the administration of OST-ME, both of which were 28.2- and 102.34-fold higher than those after the administration of OST suspension (OST-Susp). Moreover, OST-ME (0.1%) presented a similar therapeutic effect to commercially available dexamethasone eye drops (0.025%) on CNV in mouse models. In conclusion, the optimized OST-ME exhibited good tolerance and enhanced 28.2- and 102.34-fold bioavailability in the cornea and conjunctiva tissues compared with suspensions in rabbit eyes. The OST-ME is a potential ocular drug delivery for anti-CNV.
Collapse
Affiliation(s)
- Yali Zhang
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jingjing Yang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Yinjian Ji
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhen Liang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| | - Yuwei Wang
- The First of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Junjie Zhang
- Ophthalmology Department, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou University People's Hospital, Zhengzhou 450003, China
| |
Collapse
|
4
|
Shi J, Yang J, Xu H, Luo Q, Sun J, Zhang Y, Liang Z, Zhao N, Zhang J. Preparation of a Sunitinib loaded microemulsion for ocular delivery and evaluation for the treatment of corneal neovascularization in vitro and in vivo. Front Pharmacol 2023; 14:1157084. [PMID: 37497104 PMCID: PMC10366539 DOI: 10.3389/fphar.2023.1157084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Background: Corneal neovascularization (CNV) is a pathological condition that can disrupt corneal transparency, thus harming visual acuity. However, there is no effective drug to treat CNV. Sunitinib (STB), a small-molecule multiple receptor tyrosine kinase inhibitor, was shown to have an effect on CNV. The purpose of this study was to develop an STB microemulsion (STB-ME) eye drop to inhibit CNV by topical application. Methods: We successfully prepared an STB-ME by the phase inversion emulsification method, and the physicochemical properties of STB-MEs were investigated. The short-term storage stability, cytotoxicity to human corneal epithelial cells, drug release, ocular irritation, ocular pharmacokinetics and the inhibitory effect on CNV were evaluated in vitro and in vivo. Results: The optimal formulation of STB-ME is composed of oleic acid, CRH 40, Transcutol P, water and sodium hyaluronate (SH). It is a uniform spherical particle with a mean droplet size of 18.74 ± 0.09 nm and a polydispersity index of 0.196 ± 0.004. In the in vitro drug release results, STB-ME showed sustained release and was best fitted by a Korsmeyer-Peppas model (R 2 = 0.9960). The results of the ocular pharmacokinetics in rabbits showed that the formulation containing SH increased the bioavailability in the cornea (2.47-fold) and conjunctiva (2.14-fold). STB-ME (0.05% and 0.1%), administered topically, suppressed alkali burn-induced CNV in mice more effectively than saline, and high-dose (0.1%) STB-ME had similar efficacy to dexamethasone (0.025%). Conclusion: This study provides a promising formulation of STB-ME for the inhibition of CNV by topical administration, which has the excellent characteristics of effectiveness, sustained release and high ocular bioavailability.
Collapse
Affiliation(s)
- Jieran Shi
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jingjing Yang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohang Xu
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qing Luo
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jun Sun
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yali Zhang
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen Liang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Ningmin Zhao
- Department of Pharmacy, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Junjie Zhang
- Henan Eye Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Sanap SN, Bisen AC, Agrawal S, Kedar A, Bhatta RS. Ophthalmic nano-bioconjugates: critical challenges and technological advances. Ther Deliv 2023; 14:419-441. [PMID: 37535389 DOI: 10.4155/tde-2023-0031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Ophthalmic disease can cause permanent loss of vision and blindness. Easy-to-administer topical and systemic treatments are preferred for treating sight-threatening disorders. Typical ocular anatomy makes topical and systemic ophthalmic drug delivery challenging. Various novel nano-drug delivery approaches are developed to attain the desired bioavailability in the eye by increasing residence time and improved permeability across the cornea. The review focuses on novel methods that are biocompatible, safe and highly therapeutic. Novelty in nanocarrier design and modification can overcome their drawbacks and make them potential drug carriers for eye disorders in both the anterior and posterior eye segments. This review briefly discussed technologies, patented developments, and clinical trial data to support nanocarriers' use in ocular drug delivery.
Collapse
Affiliation(s)
- Sachin Nashik Sanap
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sristi Agrawal
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Kedar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Bhat I, Madhura RJ, Badanthadka M, Mamatha BS. Cow ghee as an efficient carrier to improve oral bioavailability of lutein. Food Chem 2022; 389:133046. [PMID: 35487081 DOI: 10.1016/j.foodchem.2022.133046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
In India, cow-ghee has been used in traditional medicinal preparations to solubilize lipophilic drugs and enhance intestinal absorption. However, reports exploring the role of cow-ghee, naturally rich in saturated fatty acids, in carotenoid chemistry is nil. We attempted to understand the influence of fatty-acid composition of cow-ghee and edible oils on intestinal absorption of lutein in mice. The postprandial plasma lutein level in the mice administered with cow-ghee significantly (p < 0.05) reached the maximum (Cmax-135.76 pmol/mL; AUC-592.80 pmol.h/mL) within 2 h (Tmax). Cow-ghee improved oral bioavailability of lutein by 2.02, 1.41 and 1.66 folds in comparison to control, olive oil and flaxseed oil respectively. Cow-ghee, composed of 69.28% saturated fatty-acids, has the potential to be a delivery vehicle for lutein as evidenced by higher postprandial triglyceride levels. This study is first of its kind which reports the influence of saturated fatty-acids on the oral bioavailability of lutein in an in-vivo system.
Collapse
Affiliation(s)
- Ishani Bhat
- Nitte University Center for Science Education and Research (NUCSER), Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - R J Madhura
- Nitte University Center for Animal Research and Experimentation (NUCARE), Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Murali Badanthadka
- Nitte University Center for Animal Research and Experimentation (NUCARE), Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Bangera Sheshappa Mamatha
- Nitte University Center for Science Education and Research (NUCSER), Nitte (Deemed to be University), Paneer Campus, Deralakatte, Mangaluru 575018, Karnataka, India.
| |
Collapse
|
7
|
López-Cano JJ, González-Cela-Casamayor MA, Andrés-Guerrero V, Vicario-de-la-Torre M, Benítez Del Castillo JM, Herrero-Vanrell R, Molina-Martínez IT. Development of an osmoprotective microemulsion as a therapeutic platform for ocular surface protection. Int J Pharm 2022; 623:121948. [PMID: 35752388 DOI: 10.1016/j.ijpharm.2022.121948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Self-emulsified osmoprotective ophthalmic microemulsions (O/A) were prepared by combining betaine/leucine, clusterin/oleanolic acid, and hyaluronic acid or Dextran. The microemulsions contained an internal oily phase (1.2%), an external aqueous phase (96.3%), cosolvents (1%), and surfactants (1.5%). Physicochemical characterization and in vivo and in vitro tolerance were analyzed. The formulations' osmoprotective in vitro activity was assayed in a hyperosmolar model in human corneal cells. Average internal phase sizes were 16-26 nm for the microemulsions including Dextran. Addition of hyaluronic acid increased the size range (25-39 nm). Addition of osmoprotectants did not change nanodroplet size. The formulations were isotonic (280-290 mOsm/L) with neutral pH (≈7) and zeta potential (-10 to 0 mV), low surface tension (≈35-40mN·m-1), and low viscosity (≈1 mPa·s), except for the microemulsions containing hyaluronic acid (≈4-5 mPa·s). SEM and cryo-TEM showed that all formulations exhibited sphere-shaped morphology with good cell tolerance (≈100%) and were stable at 8 °C for 9 months. Osmoprotective formulations were well tolerated in vitro and in vivo, protecting cells from hypertonic stress. We therefore developed stable microemulsions compatible with the ocular surface that could constitute a novel tool for treatment of ophthalmic diseases.
Collapse
Affiliation(s)
- J J López-Cano
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, Madrid 28040, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, San Carlos Clinical Hospital Health Research Institute (IdISSC), Madrid 28040, Spain
| | - M A González-Cela-Casamayor
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, Madrid 28040, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, San Carlos Clinical Hospital Health Research Institute (IdISSC), Madrid 28040, Spain
| | - V Andrés-Guerrero
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, Madrid 28040, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, San Carlos Clinical Hospital Health Research Institute (IdISSC), Madrid 28040, Spain
| | - M Vicario-de-la-Torre
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, Madrid 28040, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, San Carlos Clinical Hospital Health Research Institute (IdISSC), Madrid 28040, Spain
| | - J M Benítez Del Castillo
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, San Carlos Clinical Hospital Health Research Institute (IdISSC), Madrid 28040, Spain; Ocular Surface and Inflammation Unit, Ophthalmology Department, San Carlos Clinical Hospital Health Research Institute (IdISSC), Madrid 28040, Spain
| | - R Herrero-Vanrell
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, Madrid 28040, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, San Carlos Clinical Hospital Health Research Institute (IdISSC), Madrid 28040, Spain.
| | - I T Molina-Martínez
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy (UCM), Plaza Ramón y Cajal s/n, Madrid 28040, Spain; National Ocular Pathology Network (OFTARED), Carlos III Health Institute, San Carlos Clinical Hospital Health Research Institute (IdISSC), Madrid 28040, Spain.
| |
Collapse
|
8
|
El Khaoui S, Talha L, Khatouri M, Ahfir R, Naji M, Filali M. Relaxation modes in a smart system: weakly charged microemulsion and polyelectrolyte. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2075755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- S. El Khaoui
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - L. Talha
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - M. Khatouri
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - R. Ahfir
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - M. Naji
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| | - M. Filali
- LPAIS Laboratory, University of Sidi Mohamed Ben Abdellah, Fès-Atlas, Morocco
| |
Collapse
|
9
|
Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. Int J Pharm 2021; 608:121105. [PMID: 34537269 DOI: 10.1016/j.ijpharm.2021.121105] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
The human eye is a complex organ with unique anatomy and physiology that restricts the delivery of drugs to target ocular tissues/sites. Recent advances in the field of pharmacy, biotechnology and material science have led to development of novel ophthalmic dosage forms which can provide sustained drug delivery, reduce dosing frequency and improve the ocular bioavailability of drugs. This review highlights the different anatomical and physiological factors which affect ocular bioavailability of drugs and explores advancements from 2016 to 2020 in various ophthalmic preparations. Different routes of drug administration such as topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral and retrobulbar are discussed with their advances and limitations.
Collapse
|
10
|
Siafaka PI, Çağlar EŞ, Sipahi H, Charehsaz M, Aydın A, Üstündağ Okur N. Ocular microemulsion of brinzolamide: Formulation, physicochemical characterization, and in vitro irritation studies based on EpiOcular™ eye irritation assay. Pharm Dev Technol 2021; 26:765-778. [PMID: 34154503 DOI: 10.1080/10837450.2021.1944206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent years, the hydrophobic active substances have led researchers to develop new formulations to enhance bioavailability and dissolution rate; brinzolamide, a lipophilic drug belongs to carbonic anhydrase inhibitors, which cause reduction of intraocular pressure in patients suffering from glaucoma. Currently, the marketed product of brinzolamide is in the form of ocular drops; nonetheless, the conventional drops provide decreased therapeutic efficacy owing to their low bioavailability and pulsed drug release. Thus, the development of novel ocular formulations such as topical microemulsions is of high importance. In this work, the preparation of new microemulsions containing brinzolamide (0.2, 0.5 and 1% w/w) and comprised from isopropyl myristate, tween 80 and span 20 and Cremophor EL was performed. The obtained microemulsions were further characterized for their physicochemical properties. In addition, Fourier Transformed-Infrared spectroscopy was used touate the compatibility of active ingredients and components. In vitro release studies along with kinetic modeling were performed using the dialysis membrane method in simulated tear fluid. Bioadhesion studies were performed using Texture analysis. Finally, in vitro ocular irritation based on EpiOcular™ Eye Irritation Test and cytocompatibility studies was performed to examine any possible harm on ocular cells and predict in vivo safety profile.
Collapse
Affiliation(s)
- Panoraia I Siafaka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.,KES College, Nicosia, Cyprus
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Hande Sipahi
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Mohammad Charehsaz
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ahmet Aydın
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
11
|
Sharma V, Firdaus Z, Rai H, Nayak PK, Singh TD, Gautam DNS. Consumption of Ashtanga Ghrita (clarified cow butter added with herb extracts) improves cognitive dysfunction induced by scopolamine in rats via regulation of acetylcholinesterase activity and oxidative stress. Drug Metab Pers Ther 2021; 36:337-350. [PMID: 34109771 DOI: 10.1515/dmpt-2021-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Ashtanga Ghrita (AG), an Indian traditional formulation, has been used to promote neuropharmacological activities. AG is made up of clarified cow butter (ghee) and eight different herbs. METHODS To test whether scopolamine (SCP)-induced dementia and brain oxidative stress can be counteracted by AG, rats were separated into five groups (n=6/group): group one control, group two SCP (1 mg/kg b.w., i.p.) treated and group three to five were co-treated with different doses of AG (1.25, 2.5 and 5 g/kg b.w., orally) and SCP. After the treatment regimen, behavioral (Y-maze test) and brain biochemical changes were measured in all groups. RESULTS Microbial load and heavy metals were found within permissible limits. Results from attenuated total reflection Fourier-transform infrared spectroscopy demonstrated the complexation/interaction of herbal phytoconstituents with the functional groups of Ghrita. Preliminary phytochemical analysis of AG exhibited the occurrence of flavonoids, phenolics, glycosides, steroids, triterpenes, tannins, and amino acids. Findings of the experimental study exhibited that AG significantly protected the rats from SCP-induced behavioral dysfunction and brain biochemical alterations. CONCLUSIONS This study demonstrates that AG protects the brain from SCP-induced dementia by promoting brain antioxidant activity and thus could be a promising drug for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Vineet Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Zeba Firdaus
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Himanshu Rai
- Department of Science and Technology-CIMS, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tryambak Deo Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Dev Nath Singh Gautam
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
12
|
Patel D, Patel V. Development and characterization of pluronic lecithin organogel containing fluocinolone acetonide. Drug Dev Ind Pharm 2021; 47:377-384. [PMID: 33493079 DOI: 10.1080/03639045.2021.1879832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The rabble-rousing skin condition can be conventionally treated, but due to some demerits, there is a need to find a novel approach with an appropriate release profile. The research work narrates the optimization of the topical delivery system of Fluocinolone acetonide loaded in pluronic lecithin organogel. The preliminary studies were carried out and, the ternary phase diagram was established by Chemix school version 3.60. The formulation was optimized by taking a different concentration of polymers as independent and viscosity and drug release (6 h) as dependent variables by applying 32 full factorial design. The optimized batch was further compared with marketed preparation and also kept for the stability study. The release profile of the optimized batch exhibited a sustained release of up to 6 h (77.00%). It gave ex vivo drug release up to 6 h (90.64%) which is more prolonged than marketed preparation and, cutaneous disposition was found to be higher. Besides, the texture analysis was compared to that of the marketed formulation of the drug. However, the proof of the effectiveness of the formulated pluronic lecithin organogel will require further in vivo study for future aspects. In a nutshell, the proposed formulation of fluocinolone acetonide is the simplest and promising dosage form for the treatment of psoriasis.
Collapse
Affiliation(s)
- Dinal Patel
- Department of Pharmaceutics, Dharmsinh Desai University Faculty of Pharmacy, Nadiad, India
| | - Viral Patel
- Alembic Pharmaceuticals Ltd., Vadodara, India
| |
Collapse
|
13
|
Sripetch S, Loftsson T. Topical drug delivery to the posterior segment of the eye: Thermodynamic considerations. Int J Pharm 2021; 597:120332. [PMID: 33540025 DOI: 10.1016/j.ijpharm.2021.120332] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022]
Abstract
Almost all studies on non-invasive topical drug delivery to the eye have emphasized the importance of biological barriers, static membrane barriers such as the cornea and the conjunctiva/sclera and dynamic barriers such as the lacrimal drainage. Hardly any have discussed the importance of the thermodynamic activity of the permeating drug molecules. Most drugs permeate from the eye surface into the eye by passive diffusion where, according to Fick's first law, the drug concentration gradient over the various permeation barriers (e.g., the tear fluid and the lipophilic membrane barriers) is the driving force. At the barrier interphases the dissolved drug molecules must partition from one barrier to another. For example, at the tear-cornea interphase the drug molecules must partition from the aqueous exterior into the lipophilic membrane. The drug partition coefficient between two phases is commonly defined as the equilibrium concentration ratio. However, these are only approximations. The actual driving force in Fick's first law is the gradient of the chemical potential and the equilibrium between two phases is attained when the chemical potential of the drug in one phase is equal to that in the other phase. Here the importance of thermodynamic considerations in topical drug delivery to the eye is reviewed.
Collapse
Affiliation(s)
- Suppakan Sripetch
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
14
|
Tartaro G, Mateos H, Schirone D, Angelico R, Palazzo G. Microemulsion Microstructure(s): A Tutorial Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1657. [PMID: 32846957 PMCID: PMC7558136 DOI: 10.3390/nano10091657] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
Microemulsions are thermodynamically stable, transparent, isotropic single-phase mixtures of two immiscible liquids stabilized by surfactants (and possibly other compounds). The assortment of very different microstructures behind such a univocal macroscopic definition is presented together with the experimental approaches to their determination. This tutorial review includes a necessary overview of the microemulsion phase behavior including the effect of temperature and salinity and of the features of living polymerlike micelles and living networks. Once these key learning points have been acquired, the different theoretical models proposed to rationalize the microemulsion microstructures are reviewed. The focus is on the use of these models as a rationale for the formulation of microemulsions with suitable features. Finally, current achievements and challenges of the use of microemulsions are reviewed.
Collapse
Affiliation(s)
- Giuseppe Tartaro
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| | - Helena Mateos
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| | - Davide Schirone
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| | - Ruggero Angelico
- Department of Agricultural, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy;
| | - Gerardo Palazzo
- Department of Chemistry, and CSGI (Center for Colloid and Surface Science), University of Bari, via Orabona 4, 70125 Bari, Italy; (G.T.); (H.M.); (D.S.)
| |
Collapse
|
15
|
Nayak K, Misra M. Triamcinolone Acetonide-Loaded PEGylated Microemulsion for the Posterior Segment of Eye. ACS OMEGA 2020; 5:7928-7939. [PMID: 32309702 PMCID: PMC7160842 DOI: 10.1021/acsomega.9b04244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Present work investigates the possibility of a polyethyleneglycolylated (PEGylated) microemulsion (ME) to deliver drug to the posterior segment of eye. Triamcinolone acetonide (TA), a widely used drug in intraocular diseases, was selected as the model drug. Based on solubility and emulsification capacity, components of microemulsion were selected and optimum formulation was obtained using a pseudoternary phase diagram. The optimized ratio of Capmul MCM C8 (oil): AccononMC8-2 (surfactant): Transcutol (cosurfactant): deionized water was 5:35.5:4.5:55. This was further PEGylated using 1,2-distearoylphosphatylethanolamine-polyethyleneglycol 2000 (DSPE-PEG 2000). This PEGylated ME loaded with TA was characterized and evaluated in vitro, ex vivo, and in vivo for topical ocular use. The developed PEGylated ME loaded with TA was homogenous, stable, and nonirritable to eye and had the ability to reach the posterior segment of eye on topical instillation.
Collapse
|
16
|
Üstündağ Okur N, Çağlar EŞ, Siafaka PI. Novel Ocular Drug Delivery Systems: An Update on Microemulsions. J Ocul Pharmacol Ther 2020; 36:342-354. [PMID: 32255728 DOI: 10.1089/jop.2019.0135] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sufficient ophthalmic drug delivery is still challenging for pharmaceutical technologists, despite various scientific efforts. Several ocular drug carriers have been designed to enhance bioavailability by prolonging the drug retention time. One of the current encouraging approaches is the utilization of colloidal carriers with the characteristic submicron-nanometer size. Microemulsions (MEs) are such colloid systems that present sizes between 5 and 200 nm with significant thermodynamic stability and low surface tension. In addition, MEs as topical ocular carriers can lead to great ocular drug adsorption due to their enhanced retention time. Furthermore, considering that MEs are stable for long time and various temperatures, their ocular application is of great interest. The aim of this study is to cover basic physicochemical principals of ocular MEs such as their possible size, stability, and therapeutic efficacy against various eye disorders. Thus, a comprehensive review for ocular drug delivery systems in the form of MEs that show promising characteristics as their stability and therapeutic efficiency is performed.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Panoraia I Siafaka
- School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|