1
|
Oliveira Santos MDJ, Teles-Souza J, de Araújo-Calumby RF, Copeland RL, Marcelino HR, Vilas-Bôas DS. Advances, limitations and perspectives in the use of celecoxib-loaded nanocarriers in therapeutics of cancer. DISCOVER NANO 2024; 19:142. [PMID: 39240502 PMCID: PMC11379842 DOI: 10.1186/s11671-024-04070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024]
Abstract
Cancer is highlighted as a major global health challenge in the XXI century. The cyclooxygenase-2 (COX-2) enzyme rises as a widespread tumor progression marker. Celecoxib (CXB) is a selective COX-2 inhibitor used in adjuvant cancer therapy, but high concentrations are required in humans. In this sense, the development of nanocarriers has been proposed once they can improve the biopharmaceutical, pharmacokinetic and pharmacological properties of drugs. In this context, this article reviews the progress in the development of CXB-loaded nanocarriers over the past decade and their prospects. Recent advances in the field of CXB-loaded nanocarriers demonstrate the use of complex formulations and the increasing importance of in vivo studies. The types of CXB-loaded nanocarriers that have been developed are heterogeneous and based on polymers and lipids together or separately. It was found that the work on CXB-loaded nanocarriers is carried out using established techniques and raw materials, such as poly (lactic-co-glicolic acid), cholesterol, phospholipids and poly(ethyleneglycol). The main improvements that have been achieved are the use of cell surface ligands, the simultaneous delivery of different synergistic agents, and the presence of materials that can provide imaging properties and other advanced features. The combination of CXB with other anti-inflammatory drugs and/or apoptosis inducers appears to hold effective pharmacological promise. The greatest advance to date from a clinical perspective is the ability of CXB to enhance the cytotoxic effects of established chemotherapeutic agents.
Collapse
Affiliation(s)
- Miguel de Jesus Oliveira Santos
- Laboratory of Immunopathology and Molecular Biology, Department of Biomorfology, Health Sciences Institute, Federal University of Bahia, Salvador Av. Reitor Miguel Calmon, S/N, Salvador, Bahia, CEP 40110-100, Brazil
- Post-Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, BA, 40170-115, Brazil
| | - Jéssica Teles-Souza
- Laboratory of Immunopathology and Molecular Biology, Department of Biomorfology, Health Sciences Institute, Federal University of Bahia, Salvador Av. Reitor Miguel Calmon, S/N, Salvador, Bahia, CEP 40110-100, Brazil
| | - Renata Freitas de Araújo-Calumby
- Laboratory of Immunopathology and Molecular Biology, Department of Biomorfology, Health Sciences Institute, Federal University of Bahia, Salvador Av. Reitor Miguel Calmon, S/N, Salvador, Bahia, CEP 40110-100, Brazil
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, 40110-100, Brazil
| | - Robert L Copeland
- Department of Pharmacology, College of Medicine and Howard University Cancer Center, Howard University, Washington, D.C., 20059, USA
| | - Henrique Rodrigues Marcelino
- Post-Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Salvador, BA, 40170-115, Brazil
- Department of Medicines, College of Pharmacy, Federal University of Bahia, Salvador, BA, 40170-115, Brazil
| | - Deise Souza Vilas-Bôas
- Laboratory of Immunopathology and Molecular Biology, Department of Biomorfology, Health Sciences Institute, Federal University of Bahia, Salvador Av. Reitor Miguel Calmon, S/N, Salvador, Bahia, CEP 40110-100, Brazil.
- Post-Graduate Program in Immunology, Institute of Health Sciences, Federal University of Bahia, Salvador, 40110-100, Brazil.
| |
Collapse
|
2
|
Xia Q, Shen J, Ding H, Liu S, Li F, Li F, Feng N. Intravenous nanocrystals: fabrication, solidification, in vivo fate, and applications for cancer therapy. Expert Opin Drug Deliv 2023; 20:1467-1488. [PMID: 37814582 DOI: 10.1080/17425247.2023.2268512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Intravenous nanocrystals (INCs) have shown intrinsic advantages in antitumor applications, particularly their properties of high drug loading, low toxicity, and controllable size. Therefore, it has a very bright application prospect as a drug delivery system. AREAS COVERED The ideal formulation design principles, fabrication, solidification, in vivo fate of INCs, the applications in drug delivery system (DDS) and the novel applications are covered in this review. EXPERT OPINION It is vital to select a suitable formulation and fabrication method to produce a stable and sterile INCs. Besides, the type of stabilizers and physical characteristics can also influence the in vivo fate of INCs, which is worthy of further studying. Based on wide researches about applications of INCs in cancer, biomimetic INCs are concerned increasingly for its favorable compatibility. The output of these studies suggested that INCs-based drug delivery could be a novel strategy for addressing the delivery of the drug that faces solubility, bioavailability, and toxicity problems.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyi Liu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Fengqian Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Saharkhiz S, Zarepour A, Zarrabi A. A new theranostic pH-responsive niosome formulation for Doxorubicin delivery and bio-imaging against breast cancer. Int J Pharm 2023; 637:122845. [PMID: 36958608 DOI: 10.1016/j.ijpharm.2023.122845] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
As one of the newest generations of nanoplatforms, smart nanotheranostics have attracted signifivant attentions for medical applications, especially in oncology and cancer treatment. Indeed, their capability to provide treatment and diagnosis simultaneously leads to reduce time and side effects along with improving the performance. This study aims to introduce a novel smart nano-platform composed of doxorubicin-loaded pH-responsive stealth niosomes containing CdSe/ZnS Quantum dots as an imaging agent. Drug loaded nano-platform was fabricated via thin-film hydration method and then evaluated using different physicochemical tests. The entrapment efficiency and release profile of doxorubicin were assessed at three different pH (4, 6.5, and 7.4). Biological features and imaging ability of the nanoparticles were also evaluated by MTT assay, apoptosis assay, and fluorescence microscopy. Results showed that the fabricated nanoparticles were round-shaped, with a mean size of about 100±10 nm, -2 mV surface charge, and about 87% entrapment efficiency. The drug release profile presented a pH-responsive behavior (80, 60, and 40% drug release in pH 4, 6.5, and 7.4, respectively). The bio-activity assessments showed nearly 55% cytotoxicity effects via inducing cell apoptosis. Besides, the uptake of samples by the cells was confirmed through fluorescence imaging. Based on the results, this new nanoformulation could be considered as a candidate for future cancer theranostic applications.
Collapse
Affiliation(s)
- Shaghayegh Saharkhiz
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
4
|
de Oliveira AB, Ferrisse TM, de Annunzio SR, Franca MGA, Silva MGDV, Cavalheiro AJ, Fontana CR, Brighenti FL. In Vitro Evaluation of Photodynamic Activity of Plant Extracts from Senna Species against Microorganisms of Medical and Dental Interest. Pharmaceutics 2023; 15:pharmaceutics15010181. [PMID: 36678812 PMCID: PMC9861726 DOI: 10.3390/pharmaceutics15010181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Bacterial resistance requires new treatments for infections. In this context, antimicrobial photodynamic therapy (aPDT) is an effective and promising option. Objectives: Three plant extracts (Senna splendida, Senna alata, and Senna macranthera) were evaluated as photosensitizers for aPDT. Methods: Cutibacterium acnes (ATCC 6919), Streptococcus mutans (ATCC 35668), Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), and Candida albicans (ATCC 90028) were evaluated. Reactive oxygen species production was also verified. Oral keratinocytes assessed cytotoxicity. LC-DAD-MS analysis identified the chemical components of the evaluated extracts. Results: Most species cultured in the planktonic phase showed total microbial reduction (>6 log10 CFU/mL/p < 0.0001) for all extracts. C. albicans cultured in biofilm showed total microbial reduction (7.68 log10 CFU/mL/p < 0.0001) for aPDT mediated by all extracts. Extracts from S. macranthera and S. alata produced the highest number of reactive oxygen species (p < 0.0001). The S. alata extract had the highest cell viability. The LC-DAD-MS analysis of active extracts showed one naphthopyrone and seven anthraquinones as potential candidates for photoactive compounds. Conclusion: This study showed that aPDT mediated by Senna spp. was efficient in microbial suspension and biofilm of microorganisms of medical and dental interest.
Collapse
Affiliation(s)
- Analú Barros de Oliveira
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil
| | - Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil
| | - Sarah Raquel de Annunzio
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil
| | | | | | - Alberto José Cavalheiro
- Department of Biochemstry and Organic Chemistry, Chemistry Institute, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil
| | - Fernanda Lourenção Brighenti
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-903, SP, Brazil
- Correspondence: ; Tel.: +55-(16)-33016551
| |
Collapse
|
5
|
A Simple Preparation Method of Gelatin Hydrogels Incorporating Cisplatin for Sustained Release. Pharmaceutics 2022; 14:pharmaceutics14122601. [PMID: 36559095 PMCID: PMC9786307 DOI: 10.3390/pharmaceutics14122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to develop a new preparation method for cisplatin (CDDP)-incorporated gelatin hydrogels without using chemical crosslinking nor a vacuum heating instrument for dehydrothermal crosslinking. By simply mixing CDDP and gelatin, CDDP-crosslinked gelatin hydrogels (CCGH) were prepared. CDDP functions as a crosslinking agent of gelatin to form the gelatin hydrogel. Simultaneously, CDDP is incorporated into the gelatin hydrogel as a controlled release carrier. CDDP's in vitro and in vivo anticancer efficacy after incorporation into CCGH was evaluated. In the in vitro system, the CDDP was released gradually due to CCGH degradation with an initial burst release of approximately 16%. CDDP metal-coordinated with the degraded fragment of gelatin was released from CCGH with maintaining the anticancer activity. After intraperitoneal administration of CCGH, CDDP was detected in the blood circulation while its toxicity was low. Following intraperitoneal administration of CCGH in a murine peritoneal dissemination model of human gastric cancer MKN45-Luc cell line, the survival time was significantly prolonged compared with free CDDP solution. It is concluded that CCGH prepared by the CDDP-based crosslinking of gelatin is an excellent sustained release system of CDDP to achieve superior anticancer effects with minimal side effects compared with free CDDP solution.
Collapse
|
6
|
Khafaga AF, Shamma RN, Abdeen A, Barakat AM, Noreldin AE, Elzoghby AO, Sallam MA. Celecoxib repurposing in cancer therapy: molecular mechanisms and nanomedicine-based delivery technologies. Nanomedicine (Lond) 2021; 16:1691-1712. [PMID: 34264123 DOI: 10.2217/nnm-2021-0086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While cancer remains a significant global health problem, advances in cancer biology, deep understanding of its underlaying mechanism and identification of specific molecular targets allowed the development of new therapeutic options. Drug repurposing poses several advantages as reduced cost and better safety compared with new compounds development. COX-2 inhibitors are one of the most promising drug classes for repurposing in cancer therapy. In this review, we provide an overview of the detailed mechanism and rationale of COX-2 inhibitors as anticancer agents and we highlight the most promising research efforts on nanotechnological approaches to enhance COX-2 inhibitors delivery with special focus on celecoxib as the most widely studied agent for chemoprevention or combined with chemotherapeutic and herbal drugs for combating various cancers.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Rehab N Shamma
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
| | | | - Ahmed E Noreldin
- Department of Histology & Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22516, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|