1
|
Pan Q, Lu Y, Xie L, Wu D, Liu R, Gao W, Luo K, He B, Pu Y. Recent Advances in Boosting EGFR Tyrosine Kinase Inhibitors-Based Cancer Therapy. Mol Pharm 2023; 20:829-852. [PMID: 36588471 DOI: 10.1021/acs.molpharmaceut.2c00792] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Sanaei Oskouei S, Araman AO, Erginer YO. Preparation, optimization, and In vitro drug release study of microemulsions of posaconazole. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
3
|
Han Q, Zheng T, Zhang L, Wu N, Liang J, Wu H, Li G. Metformin loaded injectable silk fibroin microsphere for the treatment of spinal cord injury. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:747-768. [PMID: 34865608 DOI: 10.1080/09205063.2021.2014113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The repair of spinal cord injury is a great challenge in clinical. Improving the microenvironment of the injured site is the key strategy for accelerating axon regeneration and synaptic formation. Herein, a kind of silk fibroin microspheres functionalized by metformin through dopamine was developed using water-in-oil emulsification-diffusion method and surface modification technique, and the effect on cortical neuron was evaluated. The results showed that the microspheres showed a uniform size distribution with the diameter of around 60 μm and a concave structure. Moreover, the microspheres possessed good injectability and stability. In addition, the metformin could be successfully immobilized in the silk fibroin microspheres. The cell culture results displayed that the growth and morphology of cortical neurons on the microspheres with metformin concentration of 5 mg/mL and 10 mg/mL were obviously better than that on other samples. Notably, the spread area of single cortical cell on silk fibroin microspheres was increased with the ascending metformin concentration. Therefore, the results indicated that the metformin loaded silk fibroin microsphere could obviously improve the growth and spreading behavior of cortical neuron. The study may provide an important experimental basis for the development of drug loaded injectable biomaterials scaffolds for the treatment of spinal cord injury and have great potential for spinal cord regeneration.
Collapse
Affiliation(s)
- Qi Han
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Tiantian Zheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Linhui Zhang
- School of Medical, Nantong University, Nantong, P.R. China
| | - Ningling Wu
- School of Medical, Nantong University, Nantong, P.R. China
| | - Jiaqi Liang
- School of Medical, Nantong University, Nantong, P.R. China
| | - Hong Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, P.R. China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, P.R. China
| |
Collapse
|