1
|
Liu D, Adams M, Burdette EC, Diederich CJ. Dual-sectored transurethral ultrasound for thermal treatment of stress urinary incontinence: in silico studies in 3D anatomical models. Med Biol Eng Comput 2020; 58:1325-1340. [PMID: 32277340 DOI: 10.1007/s11517-020-02152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/25/2020] [Indexed: 11/24/2022]
Abstract
The purpose of this study is to investigate the feasibility and performance of a stationary, non-focused dual-sectored tubular transurethral ultrasound applicator for thermal exposure of tissue regions adjacent to the urethra for treatment of stress urinary incontinence (SUI) through acoustic and biothermal simulations on 3D anatomical models. Parametric studies in a generalized tissue model over dual-sectored ultrasound applicator configurations (acoustic surface intensities, lateral active acoustic output sector angles, and durations) were performed. Selected configurations and delivery strategies were applied on 3D pelvic anatomical models. Temperature and thermal dose distributions on the target region and surrounding tissues were calculated. Endovaginal cooling was explored as a strategy to mitigate vaginal heating. The 75-90° dual-sectored transurethral tubular transducer (3.5 mm outer diameter (OD), 14 mm length, 6.5 MHz, 8.8-10.2 W/cm2) and 2-3-min sonication duration were selected from the parametric study for acoustic and biothermal simulations on anatomical models. The transurethral applicator with two opposing 75-90° active lateral tubular sectors can create two heated volumes for a total of up to 1.8 cm3 over 60 EM43 °C, with at least 10 mm radial penetration depth, 1.2 mm urethral sparing, and no lethal damage to the vagina and adjacent bone (< 60 EM43 °C). Endovaginal cooling can be applied to further reduce the vaginal wall exposure (< 15 EM43 °C). Simulations on 3D anatomical models indicate that dual-sectored transurethral ultrasound applicators can selectively heat pelvic floor tissue lateral to the mid-urethra in short treatment durations, without damaging adjacent vaginal and bone tissues, as a potential alternative treatment option for stress urinary incontinence. Graphical abstract Schema for in silico investigation of transurethral ultrasound thermal therapy applicator for minimally invasive treatment of SUI.
Collapse
Affiliation(s)
- Dong Liu
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew Adams
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | - Chris J Diederich
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Aoun F, Marcelis Q, Roumeguère T. Minimally invasive devices for treating lower urinary tract symptoms in benign prostate hyperplasia: technology update. Res Rep Urol 2015; 7:125-36. [PMID: 26317083 PMCID: PMC4547646 DOI: 10.2147/rru.s55340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) represents a spectrum of related lower urinary tract symptoms (LUTS). The cost of currently recommended medications and the discontinuation rate due to side effects are significant drawbacks limiting their long-term use in clinical practice. Interventional procedures, considered as the definitive treatment for BPH, carry a significant risk of treatment-related complications in frail patients. These issues have contributed to the emergence of new approaches as alternative options to standard therapies. This paper reviews the recent literature regarding the experimental treatments under investigation and presents the currently available experimental devices and techniques used under local anesthesia for the treatment of LUTS/BPH in the vast majority of cases. Devices for delivery of thermal treatment (microwaves, radiofrequency, high-intensity focused ultrasound, and the Rezum system), mechanical devices (prostatic stent and urethral lift), fractionation of prostatic tissue (histotripsy and aquablation), prostate artery embolization, and intraprostatic drugs are discussed. Evidence for the safety, tolerability, and efficacy of these "minimally invasive procedures" is analyzed.
Collapse
Affiliation(s)
- Fouad Aoun
- Department of Urology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Quentin Marcelis
- Department of Urology, Jules Bordet Institute, Université Libre de Bruxelles, Brussels, Belgium
- Department of Urology, Erasme Hospital, University Clinics of Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Thierry Roumeguère
- Department of Urology, Erasme Hospital, University Clinics of Brussels, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
3
|
Scott SJ, Salgaonkar V, Prakash P, Burdette EC, Diederich CJ. Interstitial ultrasound ablation of vertebral and paraspinal tumours: parametric and patient-specific simulations. Int J Hyperthermia 2015; 30:228-44. [PMID: 25017322 DOI: 10.3109/02656736.2014.915992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS 3D patient-specific finite element models (n = 11) of interstitial ultrasound ablation of tumours associated with the spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43 °C (EM43 °C)) and safety margins (<45 °C and <6 EM43 °C), and to determine performance and required delivery parameters. RESULTS Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours.
Collapse
Affiliation(s)
- Serena J Scott
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California , San Francisco , California
| | | | | | | | | |
Collapse
|
4
|
Applicators for magnetic resonance-guided ultrasonic ablation of benign prostatic hyperplasia. Invest Radiol 2014; 48:387-94. [PMID: 23462673 DOI: 10.1097/rli.0b013e31827fe91e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The aims of this study were to evaluate in a canine model applicators designed for ablation of human benign prostatic hyperplasia (BPH) in vivo under magnetic resonance imaging (MRI) guidance, including magnetic resonance thermal imaging (MRTI), determine the ability of MRI techniques to visualize ablative changes in prostate, and evaluate the acute and longer term histologic appearances of prostate tissue ablated during these studies. MATERIALS AND METHODS An MRI-compatible transurethral device incorporating a tubular transducer array with dual 120° sectors was used to ablate canine prostate tissue in vivo, in zones similar to regions of human BPH (enlarged transition zones). Magnetic resonance thermal imaging was used for monitoring of ablation in a 3-T environment, and postablation MRIs were performed to determine the visibility of ablated regions. Three canine prostates were ablated in acute studies, and 2 animals were rescanned before killing at 31 days postablation. Acute and chronic appearances of ablated prostate tissue were evaluated histologically and were correlated with the MRTI and postablation MRI scans. RESULTS It was possible to ablate regions similar in size to enlarged transition zone in human BPH in 6 to 18 minutes. Regions of acute ablation showed a central "heat-fixed" region surrounded by a region of more obvious necrosis with complete disruption of tissue architecture. After 31 days, ablated regions demonstrated complete apparent resorption of ablated tissue with formation of cystic regions containing fluid. The inherent cooling of the urethra using the technique resulted in complete urethral preservation in all cases. CONCLUSIONS Prostatic ablation of zones of size and shape corresponding to human BPH is possible using appropriate transurethral applicators using MRTI, and ablated tissue may be depicted clearly in contrast-enhanced magnetic resonance images. The ability accurately to monitor prostate tissue heating, the apparent resorption of ablated regions over 1 month, and the inherent urethral preservation suggest that the magnetic resonance-guided techniques described are highly promising for the in vivo ablation of symptomatic human BPH.
Collapse
|
5
|
Abstract
High-intensity focused ultrasound (HIFU) provides focal delivery of mechanical energy deep into the body. This energy can be used to elevate the tissue temperature to such a degree that ablation is achieved. The elevated temperature can also be used to release drugs from temperature-sensitive carriers or activate therapeutic molecules using mechanical or thermal energy. Lower dose exposures modify the vasculature to allow large molecules to diffuse from blood in the surrounding tissue for local drug delivery. The energy delivery can be targeted and monitored using magnetic resonance imaging (MRI). The online image guidance and monitoring provides treatment delivery that is customized to each patient such that optimal, effective treatment can be achieved. This ability to localize and customize treatment delivery may further enhance the future potential of targeted drugs that are personalized for each patient. This review examines the rapid development of MRI-guided HIFU (MRIgHIFU) methods over the past few years and discuss their future potential.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Imaging Research, Sunnybrook Health Sciences Centre, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Prakash P, Diederich CJ. Considerations for theoretical modelling of thermal ablation with catheter-based ultrasonic sources: implications for treatment planning, monitoring and control. Int J Hyperthermia 2012; 28:69-86. [PMID: 22235787 DOI: 10.3109/02656736.2011.630337] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE To determine the impact of including dynamic changes in tissue physical properties during heating on feedback controlled thermal ablation with catheter-based ultrasound. Additionally, we compared the impact of several indicators of thermal damage on predicted extents of ablation zones for planning and monitoring ablations with this modality. METHODS A 3D model of ultrasound ablation with interstitial and transurethral applicators incorporating temperature-based feedback control was used to simulate thermal ablations in prostate and liver tissue. We investigated five coupled models of heat dependent changes in tissue acoustic attenuation/absorption and blood perfusion of varying degrees of complexity. Dimensions of the ablation zone were computed using temperature, thermal dose, and Arrhenius thermal damage indicators of coagulative necrosis. A comparison of the predictions by each of these models was illustrated on a patient-specific anatomy in the treatment planning setting. RESULTS Models including dynamic changes in blood perfusion and acoustic attenuation as a function of thermal dose/damage predicted near-identical ablation zone volumes (maximum variation < 2.5%). Accounting for dynamic acoustic attenuation appeared to play a critical role in estimating ablation zone size, as models using constant values for acoustic attenuation predicted ablation zone volumes up to 50% larger or 47% smaller in liver and prostate tissue, respectively. Thermal dose (t(43) ≥ 240 min) and thermal damage (Ω ≥ 4.6) thresholds for coagulative necrosis are in good agreement for all heating durations, temperature thresholds in the range of 54°C for short (<5 min) duration ablations and 50°C for long (15 min) ablations may serve as surrogates for determination of the outer treatment boundary. CONCLUSIONS Accounting for dynamic changes in acoustic attenuation/absorption appeared to play a critical role in predicted extents of ablation zones. For typical 5-15 min ablations with this modality, thermal dose and Arrhenius damage measures of ablation zone dimensions are in good agreement, while appropriately selected temperature thresholds provide a computationally cheaper surrogate.
Collapse
Affiliation(s)
- Punit Prakash
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California-San Francisco, CA 94143, USA.
| | | |
Collapse
|
7
|
Role of MRI in Minimally Invasive Focal Ablative Therapy for Prostate Cancer. AJR Am J Roentgenol 2011; 197:W90-6. [PMID: 21701001 DOI: 10.2214/ajr.10.5946] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Burtnyk M, Chopra R, Bronskill M. Simulation study on the heating of the surrounding anatomy during transurethral ultrasound prostate therapy: A 3D theoretical analysis of patient safety. Med Phys 2010; 37:2862-75. [DOI: 10.1118/1.3426313] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Fennessy FM, Tuncali K, Morrison PR, Tempany CM. MR imaging-guided interventions in the genitourinary tract: an evolving concept. Magn Reson Imaging Clin N Am 2010; 18:11-28. [PMID: 19962090 DOI: 10.1016/j.mric.2009.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
MR imaging-guided interventions are well established in routine patient care in many parts of the world. There are many approaches, depending on magnet design and clinical need, based on MR imaging providing excellent inherent tissue contrast without ionizing radiation risk for patients. MR imaging-guided minimally invasive therapeutic procedures have advantages over conventional surgical procedures. In the genitourinary tract, MR imaging guidance has a role in tumor detection, localization, and staging and can provide accurate image guidance for minimally invasive procedures. The advent of molecular and metabolic imaging and use of higher strength magnets likely will improve diagnostic accuracy and allow targeted therapy to maximize disease control and minimize side effects.
Collapse
Affiliation(s)
- Fiona M Fennessy
- Department of Radiology, Harvard Medical School/Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
10
|
Hynynen K. MRI-guided focused ultrasound treatments. ULTRASONICS 2010; 50:221-229. [PMID: 19818981 DOI: 10.1016/j.ultras.2009.08.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 05/28/2023]
Abstract
Focused ultrasound (FUS) allows noninvasive focal delivery of energy deep into soft tissues. The focused energy can be used to modify and eliminate tissue for therapeutic purposes while the energy delivery is targeted and monitored using magnetic resonance imaging (MRI). MRI compatible methods to deliver these exposures have undergone rapid development over the past 10 years such that clinical treatments are now routinely performed. This paper will review the current technical and clinical status of MRI-guided focused ultrasound therapy and discuss future research and development opportunities.
Collapse
Affiliation(s)
- Kullervo Hynynen
- Sunnybrook Health Sciences Centre, Imaging Research, Department of Medical Biophysics, University of Toronto, 2075 Bayview Ave., Toronto, ON, Canada M4N 3M5.
| |
Collapse
|
11
|
Kickhefel A, Roland J, Weiss C, Schick F. Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences. Phys Med 2010; 26:192-201. [PMID: 20096617 DOI: 10.1016/j.ejmp.2009.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 10/29/2009] [Accepted: 11/29/2009] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To compare magnetic resonance (MR) thermometry based on the proton resonance frequency (PRF) method using a single shot echoplanar imaging (ss EPI) sequence to both of the standard sequences, gradient echo (GRE) and segmented echoplanar imaging (seg EPI) in the in vivo human brain, at 1.5T and 3T. MATERIAL AND METHODS Repetitive MR thermometry was performed on the brain of six volunteers using GRE, seg EPI, and ss EPI sequences on whole-body 1.5T and 3T clinical systems using comparable acquisition parameters. Phase stability and temperature data precision in the human head were determined over 12 min for the three sequences at both field strengths. An ex-vivo swine skeletal muscle model was used to evaluate temperature accuracy of the ss EPI sequence during heating by high intensity focused ultrasound (HIFU). RESULTS In-vivo examinations of brain revealed an average temperature precision of 0.37 °C/0.39 °C/0.16 °C at 3T for the GRE/seg EPI/ss EPI sequences. At 1.5T, a precision of 0.58 °C/0.63 °C/0.21 °C was achieved. In the ex-vivo swine model, a strong correlation of temperature data derived using ss EPI and GRE sequences was found with a temperature deviation <1 °C. CONCLUSION The ss EPI sequence was the fastest and the most precise sequence for MR thermometry, with significantly higher accuracy compared to GRE.
Collapse
Affiliation(s)
- A Kickhefel
- Siemens Healthcare, H IM MR PLM AW Oncology, FH5/2008, Allee am Röthelheimpark 2, 91052 Erlangen, Germany.
| | | | | | | |
Collapse
|
12
|
Shafirstein G, Novák P, Moros EG, Siegel E, Hennings L, Kaufmann Y, Ferguson S, Myhill J, Swaney M, Spring P. Conductive interstitial thermal therapy device for surgical margin ablation:In vivoverification of a theoretical model. Int J Hyperthermia 2009; 23:477-92. [PMID: 17852514 DOI: 10.1080/02656730701591476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To demonstrate the efficacy and predictability of a new conductive interstitial thermal therapy (CITT) device to ablate surgical margins. METHOD The temperature distributions during thermal ablation of CITT were calculated with finite element modelling in a geometrical representation of perfused tissue. The depth of ablation was derived using the Arrhenius and the Sapareto and Dewey (S&D) models for the temperature range of 90 to 150 degrees C. The female pig animal model was used to test the validity of the mathematical model. Breast tissues were ablated to temperatures in the range of 79-170 degrees C, in vivo. Triphenyltetrazolium chloride viability stain was used to delineate viable tissue from ablated regions and the ablation depths were measured using digital imaging. RESULTS The calculations suggest that the CITT can be used to ablate perfused tissues to a 10-15 mm width within 20 minutes. The measured and calculated depths of ablation were statistically equivalent (99% confidence intervals) within +/- 1mm at 170 degrees C. At lower temperatures the equivalence between the model and the observations was within +/- 2 mm. CONCLUSION The CITT device can reliably and uniformly ablate a 10-15 mm wide region of soft tissue. Thus, it can be used to secure negative margins following the resection of a primary tumor, which could impede local recurrences in the treatment of local diseases such as early staged, non-metastatic, breast cancer.
Collapse
Affiliation(s)
- Gal Shafirstein
- Department of Otolaryngology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Burtnyk M, Chopra R, Bronskill MJ. Quantitative analysis of 3-D conformal MRI-guided transurethral ultrasound therapy of the prostate: Theoretical simulations. Int J Hyperthermia 2009; 25:116-31. [DOI: 10.1080/02656730802578802] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Kinsey AM, Diederich CJ, Rieke V, Nau WH, Pauly KB, Bouley D, Sommer G. Transurethral ultrasound applicators with dynamic multi-sector control for prostate thermal therapy: in vivo evaluation under MR guidance. Med Phys 2008; 35:2081-93. [PMID: 18561684 DOI: 10.1118/1.2900131] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to explore the feasibility and performance of a multi-sectored tubular array transurethral ultrasound applicator for prostate thermal therapy, with potential to provide dynamic angular and length control of heating under MR guidance without mechanical movement of the applicator. Test configurations were fabricated, incorporating a linear array of two multi-sectored tubular transducers (7.8-8.4 MHz, 3 mm OD, 6 mm length), with three 120 degrees independent active sectors per tube. A flexible delivery catheter facilitated water cooling (100 ml min(-1)) within an expandable urethral balloon (35 mm long x 10 mm diameter). An integrated positioning hub allows for rotating and translating the transducer assembly within the urethral balloon for final targeting prior to therapy delivery. Rotational beam plots indicate approximately 90 degrees-100 degrees acoustic output patterns from each 120 degrees transducer sector, negligible coupling between sectors, and acoustic efficiencies between 41% and 53%. Experiments were performed within in vivo canine prostate (n = 3), with real-time MR temperature monitoring in either the axial or coronal planes to facilitate control of the heating profiles and provide thermal dosimetry for performance assessment. Gross inspection of serial sections of treated prostate, exposed to TTC (triphenyl tetrazolium chloride) tissue viability stain, allowed for direct assessment of the extent of thermal coagulation. These devices created large contiguous thermal lesions (defined by 52 degrees C maximum temperature, t43 = 240 min thermal dose contours, and TTC tissue sections) that extended radially from the applicator toward the border of the prostate (approximately15 mm) during a short power application (approximately 8-16 W per active sector, 8-15 min), with approximately 200 degrees or 360 degrees sector coagulation demonstrated depending upon the activation scheme. Analysis of transient temperature profiles indicated progression of lethal temperature and thermal dose contours initially centered on each sector that coalesced within approximately 5 min to produce uniform and contiguous zones of thermal destruction between sectors, with smooth outer boundaries and continued radial propagation in time. The dimension of the coagulation zone along the applicator was well-defined by positioning and active array length. Although not as precise as rotating planar and curvilinear devices currently under development for MR-guided procedures, advantages of these multi-sectored transurethral applicators include a flexible delivery catheter and that mechanical manipulation of the device using rotational motors is not required during therapy. This multi-sectored tubular array transurethral ultrasound technology has demonstrated potential for relatively fast and reasonably conformal targeting of prostate volumes suitable for the minimally invasive treatment of BPH and cancer under MR guidance, with further development warranted.
Collapse
Affiliation(s)
- Adam M Kinsey
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Minimally invasive thermal therapy as local treatment of benign and malignant diseases has received increasing interest in recent years. Safety and efficacy of the treatment require accurate temperature measurement throughout the thermal procedure. Noninvasive temperature monitoring is feasible with magnetic resonance (MR) imaging based on temperature-sensitive MR parameters such as the proton resonance frequency (PRF), the diffusion coefficient (D), T1 and T2 relaxation times, magnetization transfer, the proton density, as well as temperature-sensitive contrast agents. In this article the principles of temperature measurements with these methods are reviewed and their usefulness for monitoring in vivo procedures is discussed. Whereas most measurements give a temperature change relative to a baseline condition, temperature-sensitive contrast agents and spectroscopic imaging can provide absolute temperature measurements. The excellent linearity and temperature dependence of the PRF and its near independence of tissue type have made PRF-based phase mapping methods the preferred choice for many in vivo applications. Accelerated MRI imaging techniques for real-time monitoring with the PRF method are discussed. Special attention is paid to acquisition and reconstruction methods for reducing temperature measurement artifacts introduced by tissue motion, which is often unavoidable during in vivo applications.
Collapse
Affiliation(s)
- Viola Rieke
- Department of Radiology, Stanford University, Stanford, CA 94305-5488, USA.
| | | |
Collapse
|
16
|
Bouchoux G, Lafon C, Berriet R, Chapelon JY, Fleury G, Cathignol D. Dual-mode ultrasound transducer for image-guided interstitial thermal therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:607-616. [PMID: 18055099 DOI: 10.1016/j.ultrasmedbio.2007.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 08/29/2007] [Accepted: 09/16/2007] [Indexed: 05/25/2023]
Abstract
Deep-seated tumors can be treated by minimally invasive interstitial ultrasound thermal therapy. A miniature transducer emitting high-intensity acoustic waves is placed in contact with the targeted area to induce local thermal necrosis. Accurate positioning of the probe and treatment monitoring must be achieved for the technique to be effective. A piezocomposite technology was used for obtaining both high-quality imaging and effective treatment with the same transducer. Prototypes were designed and built to be compatible with an endoscopic approach for treating cholangiocarcinomas in the biliary ducts. The transducer had dimensions of 2.5 x 7.5 mm(2), it was cylindrically focused at 10 mm and it was operated at a center frequency of 11 MHz. Transducer efficiency was measured at 71%, and the impulse response corresponded to an axial resolution of 0.2 mm. In-vitro tests were conducted on samples of pig liver in which lesions up to 10 mm in depth were induced. B-mode images were obtained by mechanically rotating the transducer. Treatments were monitored in three ways: (i) classical M-mode images, (ii) images of local deformation of ultrasound lines during heating and (iii) comparison of the displacements induced in the tissue by radiation force, before and after treatments. The successful use of piezocomposite materials to manufacture dual-mode transducers opens new perspectives for interstitial ultrasound thermal therapy.
Collapse
|
17
|
Prostate thermal therapy with high intensity transurethral ultrasound: the impact of pelvic bone heating on treatment delivery. Int J Hyperthermia 2008; 23:609-22. [PMID: 18097849 DOI: 10.1080/02656730701744794] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE This study was designed to assess pelvic bone temperature during typical treatment regimens of transurethral ultrasound thermal ablation of the prostate to establish guidelines for limiting bone heating. METHODS Treatment with transurethral planar, curvilinear, and sectored tubular applicators was simulated using an acoustic and biothermal pelvic model that accommodates applicator sweeping, boundary temperature control, and changes in perfusion and attenuation with thermal dose to more accurately model ultrasound energy penetration. The effects of various parameters including power and frequency (5-10 MHz) on bone heating were assessed for a range of prostate cross-sections (3-5 cm) and bone distances (1-3 cm). RESULTS All devices can produce significant bone heating (temperatures >50 degrees C, thermal dose >240 EM(43 degrees C)) without optimization of applied frequency or power for bone <3 cm from the prostate boundary. In small glands ( approximately 3 cm) increasing operating frequency of curvilinear and planar devices can increase bone temperatures, whereas the tubular applicator can be used at 10 MHz to avoid likely bone damage. In larger prostates (4-5 cm wide) increasing frequency reduces bone heating but can substantially increase treatment time. Lowering power can reduce bone temperature but may increase thermal dose by increasing treatment duration. All applicators can be used to treat glands 4-5 cm with limited bone heating by selecting appropriate power and frequency. CONCLUSIONS Pubic bone heating during ultrasound thermal therapy of the prostate can be substantial in certain situations. Successful realization of this therapy will require patient-specific treatment planning to optimally determine power and frequency in order to minimize bone heating.
Collapse
|
18
|
Fennessy FM, Tuncali K, Morrison PR, Tempany CM. MR imaging-guided interventions in the genitourinary tract: an evolving concept. Radiol Clin North Am 2008; 46:149-66, vii. [PMID: 18328885 PMCID: PMC3403748 DOI: 10.1016/j.rcl.2008.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
MR imaging-guided interventions are well established in routine patient care in many parts of the world. There are many approaches, depending on magnet design and clinical need, based on MR imaging providing excellent inherent tissue contrast without ionizing radiation risk for patients. MR imaging-guided minimally invasive therapeutic procedures have advantages over conventional surgical procedures. In the genitourinary tract, MR imaging guidance has a role in tumor detection, localization, and staging and can provide accurate image guidance for minimally invasive procedures. The advent of molecular and metabolic imaging and use of higher strength magnets likely will improve diagnostic accuracy and allow targeted therapy to maximize disease control and minimize side effects.
Collapse
Affiliation(s)
- Fiona M Fennessy
- Department of Radiology, Harvard Medical School/Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
19
|
Shafirstein G, Hennings L, Kaufmann Y, Novak P, Moros EG, Ferguson S, Siegel E, Klimberg SV, Waner M, Spring P. Conductive interstitial thermal therapy (CITT) device evaluation in VX2 rabbit model. Technol Cancer Res Treat 2007; 6:235-46. [PMID: 17535032 DOI: 10.1177/153303460700600311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have developed a conductive interstitial thermal therapy (CITT) device to precisely and reliably deliver controlled thermal doses to the surgical margins at the cavity site following tumor resection, intraoperatively. The temperature field created by CITT ablation of a perfused tissue was modeled with a finite element package Femlab. The modeling suggested that a maximum probe temperature of 120 degrees C and an ablation time of 20 minutes were required to ablate highly perfused tissue such as the VX2 carcinoma. Deployable pins enable faster and more reliable thermal ablation. The model predictions were tested by thermal ablation of VX2 carcinoma tumors implanted in adult New Zealand rabbits. The size of the ablated region was confirmed with a viability stain, triphenyltetrazolium chloride (TTC). Histopathological examination revealed 3 regions in the ablated area: a carbonized region (1-3 mm); a region that contained thermally fixed cells; and an area of coagulated necrosis cells. Cells in the thermally fixed region stained for PCNA (proliferating cell nuclear antigen) and were bounded by the carbonized layer at the cavity wall, and by necrotic cells that exhibit nuclear fragmentation and cell dissociation, 5 to 10 mm away from the CITT probe. Adjacent tissue outside the target region was spared with a clear demarcation between ablated and normal viable tissue. It is suggested that the CITT device can be used, clinically, to inhibit local recurrence by creating negative surgical margins following the resection of a primary tumor in non-metastatic early staged tumors.
Collapse
Affiliation(s)
- Gal Shafirstein
- Dept. of Otolaryngology, Univ. of Arkansas, Medical Sciences, 4301 West Markham, Little Rock, AR, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lafon C, Melodelima D, Salomir R, Chapelon JY. Interstitial devices for minimally invasive thermal ablation by high-intensity ultrasound. Int J Hyperthermia 2007; 23:153-63. [PMID: 17578339 DOI: 10.1080/02656730601173029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Interstitial ultrasound applicators have been proposed for treating deep-seated tumours that cannot be reached with extra-corporeal high-intensity focused ultrasound. In addition, interstitial ultrasound offers several advantages compared with conventional ablation technology (radiofrequency, microwaves, cryotherapy) in terms of penetration, speed of coagulation, ability to direct and control the thermal lesion and compatibility with image monitoring. The ultrasound source is brought as close as possible to the target in order to minimize the effects of attenuation and phase aberration along the ultrasound pathway. The present paper is a review of the interstitial applicators that were described during the last decade in the literature. It is presented in three sections. The technical aspects common to all applicators are first described. For example, most-described applicators are sideview applicators whose active element is water-cooled and operates at rather high frequency (above 3 MHz) in order to promote heating. Then the different potential techniques for monitoring treatment administered by the interstitial route are presented and illustrated through a review of image-guided interstitial thermal ablation. Three major techniques of imaging are used for guiding interstitial treatment: MRI, ultrasound and fluoroscopy. The third section goes in to further detail on diverse described medical applications.
Collapse
Affiliation(s)
- C Lafon
- Inserm, U556, Lyon, F-69003 France.
| | | | | | | |
Collapse
|
21
|
Rieke V, Kinsey AM, Ross AB, Nau WH, Diederich CJ, Sommer G, Pauly KB. Referenceless MR thermometry for monitoring thermal ablation in the prostate. IEEE TRANSACTIONS ON MEDICAL IMAGING 2007; 26:813-21. [PMID: 17679332 PMCID: PMC2780365 DOI: 10.1109/tmi.2007.892647] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Referenceless proton resonance frequency (PRF) shift thermometry provides a means to measure temperature changes during minimally invasive thermotherapy that is inherently robust to motion and tissue displacement. However, if the referenceless method is used to determine temperature changes during prostate ablation, phase gaps between water and fat in image regions used to determine the background phase can confound the phase estimation. We demonstrate an extension to referenceless thermometry which eliminates this problem by allowing background phase estimation in the presence of phase discontinuities between aqueous and fatty tissue. In this method, images are acquired with a multiecho sequence and binary water and fat maps are generated from a Dixon reconstruction. For the background phase estimation, water and fat regions are treated separately and the phase offset between the two tissue types is determined. The method is demonstrated feasibile in phantoms and during in vivo thermal ablation of canine prostate.
Collapse
Affiliation(s)
- Viola Rieke
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kinsey AM, Diederich CJ, Tyreus PD, Nau WH, Rieke V, Pauly KB. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy. Med Phys 2006; 33:1352-63. [PMID: 16752571 DOI: 10.1118/1.2184443] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dynamic angular control of thermal ablation and hyperthermia therapy with current interstitial heating technology is limited in capability, and often relies upon nonadjustable angular power deposition patterns and/or mechanical manipulation of the heating device. The objective of this study was to investigate the potential of multisectored tubular interstitial ultrasound devices to provide control of the angular heating distribution without device manipulation. Multisectored tubular transducers with independent sector power control were incorporated into modified versions of internally cooled (1.9 mm OD) and catheter-cooled (2.4 mm OD) interstitial ultrasound applicators in this work. The heating capabilities of these multisectored devices were evaluated by measurements of acoustic output properties, measurements of thermal lesions produced in ex vivo tissue samples, biothermal simulations of thermal ablation and hyperthermia treatments, and MR temperature imaging of ex vivo and in vivo experiments. Acoustic beam measurements of each applicator type displayed a 35 degrees -40 degrees acoustic dead zone between each independent sector, with negligible mechanical or electrical coupling. Thermal lesions produced in ex vivo liver tissue with one, two, or three sectors activated ranged from 13-18 mm in radius with contiguous zones of coagulation between active sectors. The simulations demonstrated the degree of angular control possible by using variable power levels applied to each sector, variable duration of applied constant power to individual sectors, respectively, or a multipoint temperature controller to vary the power applied to each sector. Despite the acoustic dead zone between sectors, the simulations also showed that the variance from the maximum lesion radius with three elements activated is within 4%-13% for tissue perfusions from 1-10 kg m(-3) s(-1). Simulations of hyperthermia with maximum tissue temperatures of 45 degrees C and 48 degrees C displayed radial penetration up to 2 cm of the 40 degrees C steady-state contour. Thermal characterizations of trisectored applicators in ex vivo and in vivo muscle, using real-time MR thermal imaging, reinforced angular controllability and negligible radial variance of the heating pattern from the applicators, demonstrated effective heating penetration, and displayed MR compatibility. The multisectored interstitial ultrasound applicators developed in this study demonstrated a significant degree of dynamic angular control of a heating pattern without device manipulation, while maintaining heat penetration consistent with previously reported results from other interstitial ultrasound applicators.
Collapse
Affiliation(s)
- Adam M Kinsey
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California, San Francisco, California 94115-1708, USA
| | | | | | | | | | | |
Collapse
|
23
|
Pisani LJ, Ross AB, Diederich CJ, Nau WH, Sommer FG, Glover GH, Butts K. Effects of spatial and temporal resolution for MR image-guided thermal ablation of prostate with transurethral ultrasound. J Magn Reson Imaging 2005; 22:109-18. [PMID: 15971190 DOI: 10.1002/jmri.20339] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To describe approaches for determining optimal spatial and temporal resolutions for the proton resonance frequency shift method of quantitative magnetic resonance temperature imaging (MRTI) guidance of transurethral ultrasonic prostate ablation. MATERIALS AND METHODS Temperature distributions of two transurethral ultrasound applicators (90 degrees sectored tubular and planar arrays) for canine prostate ablation were measured via MRTI during in vivo sonication, and agree well with two-dimensional finite difference model simulations at various spatial resolutions. Measured temperature distributions establish the relevant signal-to-noise ratio (SNR) range for thermometry in an interventional MR scanner, and are reconstructed at different resolutions to compare resultant temperature measurements. Various temporal resolutions are calculated by averaging MRTI frames. RESULTS When noise is added to simulated temperature distributions for tubular and planar applicators, the minimum root mean squared (RMS) error is achieved by reconstructing to pixel sizes of 1.9 and 1.7 mm, respectively. In in vivo measurements, low spatial resolution MRTI data are shown to reduce the noise without significantly affecting thermal dose calculations. Temporal resolution of 0.66 frames/minute leads to measurement errors of more than 12 degrees C during rapid heating. CONCLUSION Optimizing MRTI pixel size entails balancing large pixel SNR gain with accuracy in representing underlying temperature distributions.
Collapse
Affiliation(s)
- Laura J Pisani
- Stanford University, Lucas MRS Center, Stanford, California, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chopra R, Burtnyk M, Haider MA, Bronskill MJ. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators. Phys Med Biol 2005; 50:4957-75. [PMID: 16237234 DOI: 10.1088/0031-9155/50/21/001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A method for conformal prostate thermal therapy using transurethral ultrasound heating applicators incorporating planar transducers is described. The capability to shape heating patterns to the geometry of the prostate gland from a single element in a multi-element heating applicator was evaluated using Bioheat transfer modelling. Eleven prostate geometries were obtained from patients who underwent MR imaging of the prostate gland prior to radical prostatectomy. Results indicate that ultrasound heating applicators incorporating multi-frequency planar transducers (4 x 20 mm, f = 4.7 MHz, 9.7 MHz) are capable of shaping thermal damage patterns to the geometry of individual prostates. A temperature feedback control algorithm has been developed to control the frequency, rotation rate and applied power level from transurethral heating applicators based on measurements of the boundary temperature during heating. The discrepancy between the thermal damage boundary and the target boundary was less than 5 mm, and the transition distance between coagulation and normal tissue was less than 1 cm. Treatment times for large prostate volumes were less than 50 min, and perfusion did not have significant impact on the control algorithm. Rectal cooling will play an important role in reducing undesired heating near the rectal wall. Experimental validation of the simulations in a tissue-mimicking gel phantom demonstrated good agreement between the predicted and generated patterns of thermal damage.
Collapse
Affiliation(s)
- Rajiv Chopra
- Sunnybrook and Women's College Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.
| | | | | | | |
Collapse
|
25
|
Ross AB, Diederich CJ, Nau WH, Rieke V, Butts RK, Sommer G, Gill H, Bouley DM. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy. Med Phys 2005; 32:1555-65. [PMID: 16013714 DOI: 10.1118/1.1924314] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Thermal therapy offers a minimally invasive option for treating benign prostatic hyperplasia (BPH) and localized prostate cancer. In this study we investigated a transurethral ultrasound applicator design utilizing curvilinear, or slightly focused, transducers to heat prostatic tissue rapidly and controllably. The applicator was constructed with two independently powered transducer segments operating at 6.5 MHz and measuring 3.5 mm x 10 mm with a 15 mm radius of curvature across the short axis. The curvilinear applicator was characterized by acoustic efficiency measurements, acoustic beam plots, biothermal simulations of human prostate, ex vivo heating trials in bovine liver, and in vivo heating trials in canine prostate (n=3). Each transducer segment was found to emit a narrow acoustic beam (max width <3 mm), which extended the length of the transducer, with deeper penetration than previously developed planar or sectored tubular transurethral ultrasound applicators. Acoustic and biothermal simulations of human prostate demonstrated three treatment schemes for the curvilinear applicator: single shot (10 W, 60 s) schemes to generate narrow ablation zones (13 x 4 mm, 52 degrees C at the lesion boundary), incremental rotation (10 W, 10 degrees/45 s) to generate larger sector-shaped ablation zones (16 mm x 180 degrees sector), and rotation with variable sonication times (10 W, 10 degrees/15-90 s) to conform the ablation zone to a predefined boundary (9-17 mm x 180 degrees sector, 13 min total treatment time). During in vivo canine prostate experiments, guided by MR temperature imaging, single shot sonications (6 W/transducer, 2-3 min) with the curvilinear applicator ablated 20 degree sections of tissue to the prostate boundary (9-15 mm). Multiple adjacent sonications ("sweeping") ablated large sections of the prostate (180 degrees) by using the MR temperature imaging to adjust the power (4-6.4 W/transducer) and sonication time (30-180 s) at each 10 degrees rotation such that the periphery of the prostate reached 52 degrees C before the next rotation. The conclusion of this study was that the curvilinear applicator produces a narrow and penetrating ultrasound beam that, when combined with image guidance, can provide a precise technique for ablating target regions with a contoured outer boundary, such as the prostate capsule, by rotating in small steps while dynamically adjusting the net applied electrical power and sonication time at each position.
Collapse
Affiliation(s)
- Anthony B Ross
- Thermal Therapy Research Group, UCSF Radiation Oncology, UCSF Mt. Zion Cancer Center, 1600 Divisidero St., Box 1708, San Fransisco, California 94115-1708, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Current awareness in NMR in biomedicine. NMR IN BIOMEDICINE 2005; 18:205-12. [PMID: 15920785 DOI: 10.1002/nbm.964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|