1
|
Lin H, Xing J, Ma X, Nakanishi R, Kondo H, Fujita M, Sutoh K, Maeshige N, Fujino H. Dietary RNA from Torula Yeast Prevents Capillary Regression in Atrophied Skeletal Muscle in Rats. Life (Basel) 2024; 14:1616. [PMID: 39768324 PMCID: PMC11679692 DOI: 10.3390/life14121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic neuromuscular inactivity induces capillary regression within skeletal muscle. The objective of this study was to investigate the potential effects of dietary nucleic acids in counteracting the capillary reduction linked to chronic neuromuscular inactivity in the soleus muscle. The study utilized four distinct groups of female Wistar rats: a control group (CON), a hindlimb-unloading group (HU), an HU group supplemented with DNA (HU + DNA), and an HU group supplemented with RNA (HU + RNA). For a duration of two weeks, rats in the HU + DNA and HU + RNA groups were administered 1500 mg/kg of DNA or RNA orally on a daily basis. Two weeks of hindlimb unloading was concomitant with a reduction in the absolute weight of the soleus muscle and the capillary-to-fiber (C/F) ratio. This was associated with changes due to disuse, including increased accumulation of reactive oxygen species (ROS) and reduced levels of superoxide dismutase (SOD-2), along with elevated levels of thrombospondin-1 (TSP-1), an anti-angiogenic factor. Administering DNA at a medium concentration in the diet did not effectively prevent the reduction in the ratio between capillaries and fibers. In contrast, the equivalent concentration of RNA successfully averted the regression of capillaries during the unloading phase. Additionally, reactive oxygen species (ROS), superoxide dismutase-2 (SOD-2), and thrombospondin-1 (TSP-1) protein were kept at the same levels as in the control. The aforementioned findings reveal that RNA is more effective than DNA in preventing capillary regression triggered by muscle atrophy.
Collapse
Affiliation(s)
- Hao Lin
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Jihao Xing
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Hiroyo Kondo
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Mica Fujita
- Fordays Co., Ltd., Koami-cho, Nihonbashi, Chuo-ku, Tokyo 103-0016, Japan; (M.F.); (K.S.)
- Tokyo University of Agriculture and Technology Center for Advanced Industry-Academia Collaborative Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Keita Sutoh
- Fordays Co., Ltd., Koami-cho, Nihonbashi, Chuo-ku, Tokyo 103-0016, Japan; (M.F.); (K.S.)
- Tokyo University of Agriculture and Technology Center for Advanced Industry-Academia Collaborative Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan; (H.L.); (J.X.); (X.M.); (R.N.); (H.K.); (N.M.)
| |
Collapse
|
2
|
AlSabagh AT, Rao MS, Renno WM. The impact of heat therapy on neuromuscular function and muscle atrophy in diabetic rats. Front Physiol 2023; 13:1039588. [PMID: 36685197 PMCID: PMC9849254 DOI: 10.3389/fphys.2022.1039588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Diabetes Mellitus (DM) is the most common metabolic disease worldwide and is associated with many systemic complications. Muscle atrophy is one of the significant complications in DM patients, making routine tasks laborious as atrophy continues. It is known that heat stress stimulates heat shock proteins and other proteins that maintain muscle mass; however, it is not thoroughly studied in diabetic conditions. This study addressed whether heat therapy can attenuate muscle atrophy in STZ-induced diabetic rats and explored its mechanism of action on specific muscle proteins. Methods: Male Sprague Dawley rats were randomly divided into short-term (3 weeks) and long-term (6 weeks) experiments. In each experiment rats were divided into control, heat therapy, diabetic and diabetic + heat therapy groups. Rats in heat therapy groups were exposed to heat therapy for 30 min daily for three or six weeks in a temperature-controlled (42°C) chamber. Results: The attenuation of neuromuscular functions assessed by Rotarod, Kondziella's inverted screen, and extensor postural thrust tests showed that diabetic rats exposed to heat therapy performed significantly better than diabetic controls. Muscle cross sectional area data established that heat therapy reduced muscle atrophy by 34.3% within 3 weeks and 44.1% within 6 weeks in the diabetic groups. Further, heat therapy significantly decreased muscle atrophy markers (CD68, KLF, and MAFbx) and significantly elevated muscle hypertrophy markers (AKT, mTOR, and HSP70). Conclusions: This study shows the relevance and clinical significance of utilizing heat therapy as a viable treatment to attenuate muscle atrophy in diabetic patients.
Collapse
|
3
|
Hyldahl RD, Hafen PS, Nelson WB, Ahmadi M, Pfeifer B, Mehling J, Gifford JR. Passive muscle heating attenuates the decline in vascular function caused by limb disuse. J Physiol 2021; 599:4581-4596. [PMID: 34487346 DOI: 10.1113/jp281900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Limb disuse has profound negative consequences on both vascular and skeletal muscle health. The purpose of this investigation was to determine whether repeated application of passive heat, applied to the knee extensor muscles, could mitigate the detrimental effects of limb disuse on vascular function. This was a randomized, single-blinded placebo controlled trial. Twenty-one healthy volunteers (10 women, 11 men) underwent 10 days of unilateral lower limb immobilization and were randomized to receive either a daily 2 h sham (Imm) or heat treatment (Imm+H) using pulsed shortwave diathermy. Vascular function was assessed with Doppler ultrasound of the femoral artery and the passive leg movement technique. Biopsies of the vastus lateralis were also collected before and after the intervention. In Imm, femoral artery diameter (FAD) and PLM-induced hyperaemia (HYP) were reduced by 7.3% and 34.3%, respectively. Changes in both FAD (4% decrease; P = 0.0006) and HYP (7.8% increase; P = 0.003) were significantly attenuated in Imm+H. Vastus lateralis capillary density was not altered in either group. Immobilization significantly decreased expression of vascular endothelial growth factor (P = 0.006) and Akt (P = 0.001), and increased expression of angiopoietin 2 (P = 0.0004) over time, with no differences found between groups. Immobilization also upregulated elements associated with remodelling of the extracellular matrix, including matrix metalloproteinase 2 (P = 0.0046) and fibronectin (P = 0.0163), with no differences found between groups. In conclusion, limb immobilization impairs vascular endothelial function, but daily muscle heating via diathermy is sufficient to counteract this adverse effect. These are the first data to indicate that passive muscle heating mitigates disuse-induced vascular dysfunction. KEY POINTS: Limb disuse can be unavoidable for many of reasons (i.e. injury, bed rest, post-surgery), and can have significant adverse consequences for muscular and vascular health. We tested the hypothesis that declines in vascular function that result from lower limb immobilization could be mitigated by application of passive heat therapy. This report shows that 10 days of limb immobilization significantly decreases resistance artery diameter and vascular function, and that application of passive heat to the knee extensor muscle group each day for 2 h per day is sufficient to attenuate these declines. Additionally, muscle biopsy analyses showed that 10 days of heat therapy does not alter capillary density of the muscle, but upregulates multiple factors indicative of a vascular remodelling response. Our data demonstrate the utility of passive heat as a therapeutic tool to mitigate losses in lower limb vascular function that occur from disuse.
Collapse
Affiliation(s)
- Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Paul S Hafen
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - W Bradley Nelson
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Mohadeseh Ahmadi
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Brandon Pfeifer
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Jack Mehling
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Jayson R Gifford
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| |
Collapse
|
4
|
Hirunsai M, Srikuea R. Autophagy-lysosomal signaling responses to heat stress in tenotomy-induced rat skeletal muscle atrophy. Life Sci 2021; 275:119352. [PMID: 33771521 DOI: 10.1016/j.lfs.2021.119352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
AIMS The autophagy-lysosomal system plays a crucial role in maintaining muscle proteostasis. Excessive stimulation of the autophagic machinery is a major contributor to muscle atrophy induced by tendon transection. Hyperthermia is known to attenuate muscle protein loss during disuse conditions; however, little is known regarding the response of the autophagy pathway to heat stress following tenotomy-induced muscle atrophy. The purpose of this study was to evaluate whether heat stress would have a beneficial impact on the activation of autophagy in tenotomized soleus and plantaris muscles. MAIN METHODS Male Wistar rats were divided into control, control plus heat stress, tenotomy, and tenotomy plus heat stress groups. The effects of tenotomy were evaluated at 8 and 14 days with heat treatment applied using thermal blankets (30 min. day-1, at 40.5-41.5 °C, for 7 days). KEY FINDINGS Heat stress could normalize tenotomy-induced muscle loss and over-activation of autophagy-lysosomal signaling; this effect was evidently observed in soleus muscle tenotomized for 14 days. The autophagy-related proteins LC3B-II and LC3B-II/I tended to decrease, and lysosomal cathepsin L protein expression was significantly suppressed. While p62/SQSTM1 was not altered in response to intermittent heat exposure in tenotomized soleus muscle at day 14. Phosphorylation of the 4E-BP1 protein was significantly increased in tenotomized plantaris muscle; whereas heat stress had no impact on phosphorylation of Akt and FoxO3a proteins in both tenotomized muscles examined. SIGNIFICANCE Our results provide evidence that heat stress associated attenuation of tenotomy-induced muscle atrophy is mediated through limiting over-activation of the autophagy-lysosomal pathway in oxidative and glycolytic muscles.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand.
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Muscle temperature kinetics and thermoregulatory responses to 42 °C hot-water immersion in healthy males and females. Eur J Appl Physiol 2020; 120:2611-2624. [DOI: 10.1007/s00421-020-04482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
|
6
|
Effects of passive heating intervention on muscle hypertrophy and neuromuscular function: A preliminary systematic review with meta-analysis. J Therm Biol 2020; 93:102684. [PMID: 33077110 DOI: 10.1016/j.jtherbio.2020.102684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Passive heating has been therapeutically used to treat a range of health conditions. Further, this intervention presents as a potential exercise mimetic strategy showing acute and chronic effects on skeletal muscle adaptation and neuromuscular systems. This systematic review and meta-analysis aimed to synthesise the existing evidence on the effects of passive heating on muscle hypertrophy and neuromuscular function. Seven databases were searched (i.e., PubMed, Web of Science, Scopus, CINAHL, EMBASE, Cochrane, and SPORTDiscus) from 1937 to October 2019. Eligible studies included original papers using healthy animals or human samples (≥18 years; both sexes) that have used a control group or condition. Ten original articles were included in this review and four in the meta-analysis. The meta-analysis detected an increase in muscle mass in animal samples seven days after passive heating (I2 = 65%, P < 0.01). The systematic review showed preliminary evidence that repeated passive heating exposures may promote muscle hypertrophy in animals and humans. Moreover, augmented muscle strength (involuntary and voluntary) may be observed after long-term passive heating (animals and humans) and increases in corticospinal excitability in humans after a single passive heating session. Passive heating has shown some potential benefits for skeletal muscle mass gain and muscle force improvement. Therefore, it is plausible to suggest that passive heating might be a worthwhile alternative to be recommended as an exercise mimetic for those people who lack or are unable to complete sufficient exercise.
Collapse
|
7
|
Hirunsai M, Srikuea R. Heat stress ameliorates tenotomy-induced inflammation in muscle-specific response via regulation of macrophage subtypes. J Appl Physiol (1985) 2020; 128:612-626. [DOI: 10.1152/japplphysiol.00594.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During disuse-induced muscle atrophy, macrophages play a significant role in inflammatory responses that occur with muscle degeneration and repair. Heat treatment has been shown to alleviate muscle atrophy; however, the effect of heat on inflammatory responses following tenotomy has not been evaluated. This study examined the effects of heat stress on proinflammatory (M1-like) and anti-inflammatory (M2-like) macrophage populations. Also, cytokine protein expression in oxidative soleus and glycolytic plantaris muscles following Achilles tendon transection (tenotomy) was analyzed. Male Wistar rats were assigned into control, control plus heat stress, tenotomy, and tenotomy plus heat stress groups. Tenotomy was performed for 8 (TEN8) and 14 (TEN14) days to induce muscle inflammation. Heat treatments, 30 min at 40.5–41.5°C, were given 24 h before and 1–6 consecutive days after tenotomy (TEN8 group) or every other day (TEN14 group). Tenotomy induced muscle necrosis, extensive infiltration of M1- (CD68+), and M2- (CD163+) like macrophages and increased tumor necrosis factor-α (TNFα) but not interleukin-10 (IL-10) protein expression. Heat stress caused a reduction in necrotic fibers, M1-like macrophage invasion, and TNFα protein expression in tenotomized soleus muscle. Additionally, heat stress enhanced M2-like macrophage accumulation during the 14 days following tenotomy in soleus muscle but did not affect IL-10 protein level. Our results indicate that heat stress can limit tenotomy-induced inflammatory responses through modulation of macrophage subtypes and TNFα protein expression, preferentially in oxidative muscle. These findings shed light on the ability of heat stress as a therapeutic strategy to manipulate macrophages for optimal inflammation during muscle atrophy. NEW & NOTEWORTHY We investigated differential effects of heat stress on modulating inflammation following 8 and 14 days of tenotomy in soleus and plantaris muscles. Heat exposure could reduce necrosis, suppress pro-inflammatory macrophage infiltration, and diminish TNFα protein expression in tenotomized muscle, which preferentially occurred in soleus muscle. Additionally, heat stress enhanced anti-inflammatory macrophages in soleus muscle in the 14-day study period. Neither tenotomy nor heat stress had an impact on IL-10 protein expression in either muscle examined.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|