1
|
Ye M, Yin D, Wu Y, Miao H, Wu Z, Liu P. Infrared radiation for cancer hyperthermia: the light to brighten up oncology. Expert Rev Anticancer Ther 2024; 24:1147-1160. [PMID: 39390965 DOI: 10.1080/14737140.2024.2416063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Cancer constitutes the greatest public health threat to humans, as its incidence and mortality rates continue to increase worldwide. With the development of medical physics, more practitioners focus on the direct and indirect anti-tumor effects of physical factors. Infrared radiation (INR) is currently the most rapidly developing physical therapy method for tumors and has become a favored target for many oncologists and researchers owing to its advantages of high efficiency, low toxicity, and strong feasibility. AREAS COVERED This work provides a comprehensive collection of the latest information on INR anti-tumor research, drawing from public medical databases (PubMed, Web of Science, Embase, and Clinical Trials) from the last 10 years (2014 to 2024), and encompassing both basic and clinical research in oncology and physics. This article reviews the application of INR in tumor hyperthermia, summarizes and analyzes the practical value of INR for tumor treatment, and discusses future development trends to provide valuable assistance for the subsequent development of oncology. EXPERT OPINION Currently, INR has continuously accumulated excellent data in the field of tumor hyperthermia, bringing practical survival benefits to patients with cancer, and playing an important role in basic and clinical cancer research.
Collapse
Affiliation(s)
- Mengna Ye
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Dashan Yin
- Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufei Wu
- ACS (International) School of Singapore, Singapore, Singapore
| | - Hua Miao
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
| | - Zhibing Wu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- Department of Internal Medicine, Liangzhu Sub-District Community Health Service Center, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Pengyuan Liu
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Sarogni P, Frusca V, Zamborlin A, Giannini N, Menicagli M, Brancato L, Linsalata S, Di Martino F, Gonnelli A, Paiar F, Van den Bossche J, Bogers J, Voliani V. Neoadjuvant Hyperthermia Combined with Hybrid Nanoarchitectures Enhances Chemoradiotherapy Efficacy in Head and Neck Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43272-43282. [PMID: 39126693 DOI: 10.1021/acsami.4c07393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Head and neck squamous cell carcinomas are characterized by a high incidence of recurrence, especially in patients with locally advanced disease. Standard treatment strategies can be associated with severe side effects to healthy tissues that can negatively impact the patient's quality of life. Hyperthermia (HT) is a noninvasive treatment modality that has improved the effectiveness of chemotherapy (CT) and/or radiotherapy (RT) for the management of some solid neoplasms. In this context, the association of this approach with rationally designed nanomaterials may further enhance the treatment outcome. In this study, we demonstrate the enhanced effect of neoadjuvant HT in combination with hybrid nanoarchitectures enclosing a cisplatin prodrug (NAs-CisPt) and RT. All the treatments and their combinations have been fully evaluated by employing standardized chorioallantoic membrane tumor models of HPV-negative head and neck carcinoma. An improved tumor-shrinking effect was observed by the administration of the trimodal treatment (HT/NAs-CisPt/RT), which also highlighted a significant increase in apoptosis. Our findings demonstrate that the combination of HT with nanotechnology-based CT and RT in a certain order enhances the in vivo treatment outcome. On a broader basis, this study paves the way for the next exploration of noninvasive treatment approaches for the clinical management of oral cancer based on innovative strategies.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Valentina Frusca
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, S. Giuliano Terme, 56017 Pisa, Italy
| | | | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Fabio Di Martino
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126 Pisa, Italy
| | | | - Johannes Bogers
- ElmediX NV, Esperantolaan 4, 3001 Heverlee, Belgium
- Laboratory of Cell Biology and Histology, University of Antwerp, 2610 Antwerp, Belgium
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
3
|
Zi G, Chen J, Peng Y, Wang Y, Peng B. Hyperthermia and cisplatin combination therapy promotes caspase-8 accumulation and activation to enhance apoptosis and pyroptosis in cancer cells. Int J Hyperthermia 2024; 41:2325489. [PMID: 38632954 DOI: 10.1080/02656736.2024.2325489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/26/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Hyperthermia can play a synergistic role with chemotherapy in combination therapy. Although the association between caspase activation, apoptosis, and pyroptosis have been published for both cisplatin (CDDP) and hyperthermia therapies independently, the interactions between these molecular pathways in combination therapy are unknown. The present study aimed to investigate the possible interactions between caspase 8 activation, apoptosis, and pyroptosis in combination therapy. METHODS Cells were treated with CDDP (15 µg/ml), followed by hyperthermia at optimized temperature (42.5 °C) in water-bath. After combination therapy, cell viability was analyzed by CCK-8, and cell death was analyzed by Annexin-V-FITC/PI and caspases activation. Immuno-staining and co-immuno-precipitation were used to examine the interaction between p62 and caspase-8. Pyroptosis was investigated by western blotting and transmission electron microscopy. E3 ligase Cullin 3 was knockdown by siRNA. In addition, caspase-8 activation was modulated by CRISPR-Cas9 gene-editing or pharmacological inhibition. RESULTS Combination therapy promoted K63-linked polyubiquitination of caspase-8 and cellular accumulation of caspase-8. In turn, polyubiquitinated caspase-8 interacted with p62 and led to the activation of caspase-3. Knockdown of the E3 ligase Cullin 3 by siRNA reduced caspase-8 polyubiquitination and activation. In addition, combination therapy induced release of the pore-forming N-terminus from gasdermins and promoted pyroptosis along with caspase-8 accumulation and activation. Knockdown of caspase-8 by CRISPR/Cas9 based gene editing reduced the sensitivity of tumor cells to apoptosis and pyroptosis. CONCLUSIONS Our study presented a novel mechanism in which hyperthermia synergized with chemotherapy in promoting apoptosis and pyroptosis in a caspase-8 dependent manner.
Collapse
Affiliation(s)
- Guanghui Zi
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| | - Jin Chen
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| | | | - Yue Wang
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| | - Baowei Peng
- College of Pharmacy, DaLi University, Dali, Yunan Province , China
| |
Collapse
|
4
|
Chen C, Ren A, Yi Q, Cai J, Khan M, Lin Y, Huang Z, Lin J, Zhang J, Liu W, Xu A, Tian Y, Yuan Y, Zheng R. Therapeutic hyperthermia regulates complement C3 activation and suppresses tumor development through HSPA5/NFκB/CD55 pathway in nasopharyngeal carcinoma. Clin Exp Immunol 2023; 213:221-234. [PMID: 37249005 PMCID: PMC10361742 DOI: 10.1093/cei/uxad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/09/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is endemic in Southern China and Southeast Asia. Hyperthermia is widely used in combination with chemotherapy and radiotherapy to enhance therapeutic efficacy in NPC treatment, but the underlying anti-tumor mechanisms of hyperthermia remain unclear. Complement C3 has been reported to participate in the activation of immune system in the tumor microenvironment, leading to tumor growth inhibition. In this study, we aimed to explore the effect and mechanisms of hyperthermia and investigate the functional role of complement C3 in NPC hyperthermia therapy (HT). The serum levels of complement C3 before and after hyperthermia therapy in patients with NPC were analyzed. NPC cell lines SUNE1 and HONE1 were used for in vitro experiment to evaluate the function of complement C3 and HT on cell proliferation and apoptosis. SUNE1 xenograft mouse model was established and tumor-bearing mice were treated in water bath at a constant temperature of 43°C. Tumor samples were collected at different time points to verify the expression of complement C3 by immunohistochemical staining and western blot. The differential expressed genes after hyperthermia were analyzed by using RNA sequencing. We found that complement could enhance hyperthermia effect on suppressing proliferation and promoting apoptosis of tumor cells in NPC. Hyperthermia decreased the mRNA expression of complement C3 in tumor cells, but promoted the aggregation and activation circulating C3 in NPC tumor tissue. By using in vitro hyperthermia-treated NPC cell lines and SUNE1 xenograft tumor-bearing mice, we found that the expression of heat shock protein 5 (HSPA5) was significantly upregulated. Knockdown of HSPA5 abrogated the anti-tumor effect of hyperthermia. Moreover, we demonstrated that hyperthermia downregulated CD55 expression via HSPA5/NFκB (P65) signaling and activated complement cascade. Our findings suggest that therapeutic hyperthermia regulates complement C3 activation and suppresses tumor development via HSPA5/NFκB/CD55 pathway in NPC.
Collapse
Affiliation(s)
- Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Anbang Ren
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Qi Yi
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jiazuo Cai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Muhammad Khan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunen Lin
- Department of Pathology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhong Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Wei Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Anan Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - YaWei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ronghui Zheng
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zhang Y, Lu X, Ji H, Zheng L, Chen G, Qian Y. Effects of Deep Hyperthermia Combined with Intraperitoneal Chemotherapy on Liver-Kidney Function, Immune Function, and Long-Term Survival in Patients with Abdominal Metastases. Emerg Med Int 2023; 2023:5878402. [PMID: 37125381 PMCID: PMC10147530 DOI: 10.1155/2023/5878402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Objectives To analyze the effects of deep hyperthermia combined with intraperitoneal chemotherapy on liver-kidney function, immune function, and long-term survival in patients with abdominal metastases. Methods A total of 88 patients with abdominal metastases confirmed in the hospital were enrolled as the research objects between August 2018 and August 2021. They were randomly divided into control group (n = 44) and observation group (n = 44). The control group was treated with intraperitoneal chemotherapy, while observation group was additionally treated with deep hyperthermia. The general clinical data of patients were recorded. The short-term and long-term curative effects were evaluated. The occurrence of side effects in both groups was recorded. Before and after treatment, levels of alanine transaminase (ALT) and aspartate transaminase (AST) were detected by full-automatic biochemical analyzer. The level of blood urea nitrogen (BUN) was detected by the urease electrode method. The level of serum creatinine (Scr) was detected by the picric acid method. The levels of CD3 +, CD4 +, CD8 +, and NK cells were detected by BD FACSCalibur flow cytometer. Results There was no significant difference in clinical data between the two groups (P > 0.05). In the observation group, ORR was significantly higher than that in the control group (54.55% vs 29.55%) (P < 0.05), OS was significantly longer than that in the control group (P < 0.05), and median survival time and mPFS were longer than those in the control group. After treatment, the levels of ALT, AST, BUN, and Scr were significantly increased in the control group (P < 0.05), but there was no significant difference in peripheral blood CD3 +, CD4 +, and CD4 +/CD8 + ratio or count of NK cells before and after treatment (P > 0.05). Before and after treatment, there was no significant difference in the levels of ALT, AST, BUN, and Scr in the observation group (P > 0.05). After treatment, peripheral blood CD3 +, CD4 +, and CD4 +/CD8 + ratio and count of NK cells were all increased in the observation group, significantly higher than those in the control group (P < 0.05). The incidence of chemotherapy side effects in the observation group was significantly lower than that in the control group (P < 0.05). Conclusion The short-term and long-term curative effects of deep hyperthermia combined with intraperitoneal chemotherapy are good on patients with intraperitoneal metastases, with less damage to liver-kidney function. It is beneficial to enhance immune function of patients, with mild side effects.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Affiliated Hai'an Hospital of Nantong University, Nantong City, Jiangsu 226600, China
| | - Xiaomin Lu
- Department of Oncology, Affiliated Hai'an Hospital of Nantong University, Nantong City, Jiangsu 226600, China
| | - Haoming Ji
- Department of Oncology, Affiliated Hai'an Hospital of Nantong University, Nantong City, Jiangsu 226600, China
| | - Liangfeng Zheng
- Cancer Central Laboratory, Affiliated Hai'an Hospital of Nantong University, Nantong City, Jiangsu 226600, China
| | - Guodong Chen
- Department of Oncology, Affiliated Hai'an Hospital of Nantong University, Nantong City, Jiangsu 226600, China
| | - Ye Qian
- Department of Oncology, Affiliated Hai'an Hospital of Nantong University, Nantong City, Jiangsu 226600, China
| |
Collapse
|
6
|
Yang X, Gao M, Xu R, Tao Y, Luo W, Wang B, Zhong W, He L, He Y. Hyperthermia combined with immune checkpoint inhibitor therapy in the treatment of primary and metastatic tumors. Front Immunol 2022; 13:969447. [PMID: 36032103 PMCID: PMC9412234 DOI: 10.3389/fimmu.2022.969447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
According to the difference in temperature, thermotherapy can be divided into thermal ablation and mild hyperthermia. The main advantage of thermal ablation is that it can efficiently target tumors in situ, while mild hyperthermia has a good inhibitory effect on distant metastasis. There are some similarities and differences between the two therapies with respect to inducing anti-tumor immune responses, but neither of them results in sustained systemic immunity. Malignant tumors (such as breast cancer, pancreatic cancer, nasopharyngeal carcinoma, and brain cancer) are recurrent, highly metastatic, and highly invasive even after treatment, hence a single therapy rarely resolves the clinical issues. A more effective and comprehensive treatment strategy using a combination of hyperthermia and immune checkpoint inhibitor (ICI) therapies has gained attention. This paper summarizes the relevant preclinical and clinical studies on hyperthermia combined with ICI therapies and compares the efficacy of two types of hyperthermia combined with ICIs, in order to provide a better treatment for the recurrence and metastasis of clinically malignant tumors.
Collapse
Affiliation(s)
- Ximing Yang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Miaozhi Gao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Runshi Xu
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yangyang Tao
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Luo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Binya Wang
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenliang Zhong
- Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Ophthalmology and Otolaryngology Diseases Prevention and Treatment with Traditional Chinese Medicine and Visual Function Protection Engineering and Technological Research Center, Changsha, China
| | - Lan He
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yingchun He
- Medical School, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Ophthalmology and Otolaryngology Diseases Prevention and Treatment with Traditional Chinese Medicine and Visual Function Protection Engineering and Technological Research Center, Changsha, China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Changsha, China
- *Correspondence: Yingchun He,
| |
Collapse
|
7
|
Complementary and Alternative Therapies in Oncology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095071. [PMID: 35564468 PMCID: PMC9104744 DOI: 10.3390/ijerph19095071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Cancer is the second leading cause of death worldwide, after cardiovascular diseases. Increasing patients’ awareness and providing easier access to public information result in greater interest in alternative anticancer or unproven supportive therapies. Fear of cancer and limited trust in the treating physician are also important reasons leading patients to seek these methods. Trust and good communication are essential to achieving truthful collaboration between physicians and patients. Given the popularity of CAM, better knowledge about these alternative practices may help oncologists discuss this issue with their patients. This article objectively reviews the most common unconventional therapies used by cancer patients.
Collapse
|
8
|
Li X, Duan S, Zheng Y, Yang Y, Wang L, Li X, Zhang Q, Thorne RF, Li W, Yang D. Hyperthermia inhibits growth of nasopharyngeal carcinoma through degradation of c-Myc. Int J Hyperthermia 2022; 39:358-371. [PMID: 35184661 DOI: 10.1080/02656736.2022.2038282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Xiaole Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shichao Duan
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingjuan Zheng
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Yang
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinqiang Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Zhang
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Rick F. Thorne
- Translational Research Institute, Henan Provincial People’s Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Wencai Li
- Department of Pathology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daoke Yang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Radiotherapy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|