1
|
Cury RG, Pavese N, Aziz TZ, Krauss JK, Moro E. Gaps and roadmap of novel neuromodulation targets for treatment of gait in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:8. [PMID: 35017551 PMCID: PMC8752758 DOI: 10.1038/s41531-021-00276-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Gait issues in Parkinson's disease (PD) are common and can be highly disabling. Although levodopa and deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus internus have been established therapies for addressing the motor symptoms of PD, their effects on gait are less predictable and not well sustained with disease progression. Given the high prevalence of gait impairment in PD and the limitations in currently approved therapies, there has been considerable interest in alternative neuromodulation targets and techniques. These have included DBS of pedunculopontine nucleus and substantia nigra pars reticulata, spinal cord stimulation, non-invasive modulation of cortical regions and, more recently, vagus nerve stimulation. However, successes and failures have also emerged with these approaches. Current gaps and controversies are related to patient selection, optimal electrode placement within the target, placebo effects and the optimal programming parameters. Additionally, recent advances in pathophysiology of oscillation dynamics have driven new models of closed-loop DBS systems that may or may not be applicable to gait issues. Our aim is to describe approaches, especially neuromodulation procedures, and emerging challenges to address PD gait issues beyond subthalamic nucleus and the globus pallidus internus stimulation.
Collapse
Affiliation(s)
- Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Tipu Z Aziz
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Elena Moro
- Division of Neurology, Grenoble Institute of Neurosciences, Grenoble Alpes University, CHU of Grenoble, Grenoble, France
- INSERM U1216, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
2
|
Rüb U, Stratmann K, Heinsen H, Seidel K, Bouzrou M, Korf HW. Alzheimer's Disease: Characterization of the Brain Sites of the Initial Tau Cytoskeletal Pathology Will Improve the Success of Novel Immunological Anti-Tau Treatment Approaches. J Alzheimers Dis 2017; 57:683-696. [PMID: 28269779 DOI: 10.3233/jad-161102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) represents the most frequent neurodegenerative disease of the human brain worldwide. Currently practiced treatment strategies for AD only include some less effective symptomatic therapeutic interventions, which unable to counteract the disease course of AD. New therapeutic attempts aimed to prevent, reduce, or remove the extracellular depositions of the amyloid-β protein did not elicit beneficial effects on cognitive deficits or functional decline of AD. In view of the failure of these amyloid-β-based therapeutic trials and the close correlation between the brain pathology of the cytoskeletal tau protein and clinical AD symptoms, therapeutic attention has since shifted to the tau cytoskeletal protein as a novel drug target. The abnormal hyperphosphorylation and intraneuronal aggregation of this protein are early events in the evolution of the AD-related neurofibrillary pathology, and the brain spread of the AD-related tau aggregation pathology may possibly follow a corruptive protein templating and seeding-like mechanism according to the prion hypothesis. Accordingly, immunotherapeutic targeting of the tau aggregation pathology during the very early pre-tangle phase is currently considered to represent an effective and promising therapeutic approach for AD. Recent studies have shown that the initial immunoreactive tau aggregation pathology already prevails in several subcortical regions in the absence of any cytoskeletal changes in the cerebral cortex. Thus, it may be hypothesized that the subcortical brain regions represent the "port of entry" for the pathogenetic agent from which the disease ascends anterogradely as an "interconnectivity pathology".
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Katharina Stratmann
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Helmut Heinsen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Department of Pathology, Ageing Brain Study Group, University of São Paulo Medical School, São Paulo, Brazil
| | - Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Mohamed Bouzrou
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| | - Horst-Werner Korf
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
3
|
Hamani C, Lozano AM, Mazzone PAM, Moro E, Hutchison W, Silburn PA, Zrinzo L, Alam M, Goetz L, Pereira E, Rughani A, Thevathasan W, Aziz T, Bloem BR, Brown P, Chabardes S, Coyne T, Foote K, Garcia-Rill E, Hirsch EC, Okun MS, Krauss JK. Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging. Stereotact Funct Neurosurg 2016; 94:307-319. [PMID: 27728909 DOI: 10.1159/000449011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023]
Abstract
The pedunculopontine nucleus (PPN) region has received considerable attention in clinical studies as a target for deep brain stimulation (DBS) in Parkinson disease. These studies have yielded variable results with an overall impression of improvement in falls and freezing in many but not all patients treated. We evaluated the available data on the surgical anatomy and terminology of the PPN region in a companion paper. Here we focus on issues concerning surgical technique, imaging, and early side effects of surgery. The aim of this paper was to gain more insight into the reasoning for choosing specific techniques and to discuss shortcomings of available studies. Our data demonstrate the wide range in almost all fields which were investigated. There are a number of important challenges to be resolved, such as identification of the optimal target, the choice of the surgical approach to optimize electrode placement, the impact on the outcome of specific surgical techniques, the reliability of intraoperative confirmation of the target, and methodological differences in postoperative validation of the electrode position. There is considerable variability both within and across groups, the overall experience with PPN DBS is still limited, and there is a lack of controlled trials. Despite these challenges, the procedure seems to provide benefit to selected patients and appears to be relatively safe. One important limitation in comparing studies from different centers and analyzing outcomes is the great variability in targeting and surgical techniques, as shown in our paper. The challenges we identified will be of relevance when designing future studies to better address several controversial issues. We hope that the data we accumulated may facilitate the development of surgical protocols for PPN DBS.
Collapse
Affiliation(s)
- Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Ont., Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Stratmann K, Heinsen H, Korf HW, Del Turco D, Ghebremedhin E, Seidel K, Bouzrou M, Grinberg LT, Bohl J, Wharton SB, den Dunnen W, Rüb U. Precortical Phase of Alzheimer's Disease (AD)-Related Tau Cytoskeletal Pathology. Brain Pathol 2015; 26:371-86. [PMID: 26193084 DOI: 10.1111/bpa.12289] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) represents the most frequent progressive neuropsychiatric disorder worldwide leading to dementia. We systematically investigated the presence and extent of the AD-related cytoskeletal pathology in serial thick tissue sections through all subcortical brain nuclei that send efferent projections to the transentorhinal and entorhinal regions in three individuals with Braak and Braak AD stage 0 cortical cytoskeletal pathology and fourteen individuals with Braak and Braak AD stage I cortical cytoskeletal pathology by means of immunostainings with the anti-tau antibody AT8. These investigations revealed consistent AT8 immunoreactive tau cytoskeletal pathology in a subset of these subcortical nuclei in the Braak and Braak AD stage 0 individuals and in all of these subcortical nuclei in the Braak and Braak AD stage I individuals. The widespread affection of the subcortical nuclei in Braak and Braak AD stage I shows that the extent of the early subcortical tau cytoskeletal pathology has been considerably underestimated previously. In addition, our novel findings support the concept that subcortical nuclei become already affected during an early 'pre-cortical' evolutional phase before the first AD-related cytoskeletal changes occur in the mediobasal temporal lobe (i.e. allocortical transentorhinal and entorhinal regions). The very early involved subcortical brain regions may represent the origin of the AD-related tau cytoskeletal pathology, from where the neuronal cytoskeletal pathology takes an ascending course toward the secondarily affected allocortex and spreads transneuronally along anatomical pathways in predictable sequences.
Collapse
Affiliation(s)
- Katharina Stratmann
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| | - Helmut Heinsen
- Morphological Brain Research Unit, Psychiatric Clinic, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Horst-Werner Korf
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany
| | - Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| | - Mohamed Bouzrou
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, CA.,Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Jürgen Bohl
- Neuropathology Division, University Clinic of Mainz, Mainz, Germany
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Wilfred den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Udo Rüb
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
5
|
Fasano A, Aquino CC, Krauss JK, Honey CR, Bloem BR. Axial disability and deep brain stimulation in patients with Parkinson disease. NATURE REVIEWS. NEUROLOGY 2015. [PMID: 25582445 DOI: 10.1038/nrneurol.2014.252.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Axial motor signs-including gait impairment, postural instability and postural abnormalities-are common and debilitating symptoms in patients with advanced Parkinson disease. Dopamine replacement therapy and physiotherapy provide, at best, partial relief from axial motor symptoms. In carefully selected candidates, deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus is an established treatment for 'appendicular' motor signs (limb tremor, bradykinesia and rigidity). However, the effects of DBS on axial signs are much less clear, presumably because motor control of axial and appendicular functions is mediated by different anatomical-functional pathways. Here, we discuss the successes and failures of DBS in managing axial motor signs. We systematically address a series of common clinical questions associated with the preoperative phase, during which patients presenting with prominent axial signs are considered for DBS implantation surgery, and the postoperative phase, in particular, the management of axial motor signs that newly develop as postoperative complications, either acutely or with a delay. We also address the possible merits of new targets-including the pedunculopontine nucleus area, zona incerta and substantia nigra pars reticulata-to specifically alleviate axial symptoms. Supported by a rapidly growing body of evidence, this practically oriented Review aims to support decision-making in the management of axial symptoms.
Collapse
Affiliation(s)
- Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Toronto Western Hospital, UHN, University of Toronto, 399 Bathurst Street, 7 Mc412, Toronto, ON M5T 2S8, Canada
| | - Camila C Aquino
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Toronto Western Hospital, UHN, University of Toronto, 399 Bathurst Street, 7 Mc412, Toronto, ON M5T 2S8, Canada
| | - Joachim K Krauss
- Department of Neurosurgery, Medical School Hannover, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Christopher R Honey
- Division of Neurosurgery at the University of British Columbia, 8105-2775 Laurel Street, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada
| | - Bastiaan R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, PO Box 9101, 6500 HB Nijmegen, Netherlands
| |
Collapse
|
6
|
Abstract
Axial motor signs-including gait impairment, postural instability and postural abnormalities-are common and debilitating symptoms in patients with advanced Parkinson disease. Dopamine replacement therapy and physiotherapy provide, at best, partial relief from axial motor symptoms. In carefully selected candidates, deep brain stimulation (DBS) of the subthalamic nucleus or globus pallidus internus is an established treatment for 'appendicular' motor signs (limb tremor, bradykinesia and rigidity). However, the effects of DBS on axial signs are much less clear, presumably because motor control of axial and appendicular functions is mediated by different anatomical-functional pathways. Here, we discuss the successes and failures of DBS in managing axial motor signs. We systematically address a series of common clinical questions associated with the preoperative phase, during which patients presenting with prominent axial signs are considered for DBS implantation surgery, and the postoperative phase, in particular, the management of axial motor signs that newly develop as postoperative complications, either acutely or with a delay. We also address the possible merits of new targets-including the pedunculopontine nucleus area, zona incerta and substantia nigra pars reticulata-to specifically alleviate axial symptoms. Supported by a rapidly growing body of evidence, this practically oriented Review aims to support decision-making in the management of axial symptoms.
Collapse
|
7
|
Morita H, Hass CJ, Moro E, Sudhyadhom A, Kumar R, Okun MS. Pedunculopontine Nucleus Stimulation: Where are We Now and What Needs to be Done to Move the Field Forward? Front Neurol 2014; 5:243. [PMID: 25538673 PMCID: PMC4255598 DOI: 10.3389/fneur.2014.00243] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/10/2014] [Indexed: 11/13/2022] Open
Abstract
Falls and gait impairment in Parkinson's Disease (PD) is a leading cause of morbidity and mortality, significantly impacting quality of life and contributing heavily to disability. Thus far axial symptoms, such as postural instability and gait freezing, have been refractory to current treatment approaches and remain a critical unmet need. There has been increased excitement surrounding the surgical targeting of the pedunculopontine nucleus (PPN) for addressing axial symptoms in PD. The PPN and cuneate nucleus comprise the mesencephalic locomotor region, and electrophysiologic studies in animal models and human imaging studies have revealed a key role for the PPN in gait and postural control, underscoring a potential role for DBS surgery. Previous limited studies of PPN deep brain stimulation (DBS) in treating gait symptoms have had mixed clinical outcomes, likely reflect targeting variability and the inherent challenges of targeting a small brainstem structure that is both anatomically and neurochemically heterogeneous. Diffusion tractography shows promise for more accurate targeting and standardization of results. Due to the limited experience with PPN DBS, several unresolved questions remain about targeting and programing. At present, it is unclear if there is incremental benefit with bilateral versus unilateral targeting of PPN or whether PPN targeting should be performed as an adjunct to one of the more traditional targets. The PPN also modulates non-motor functions including REM sleep, cognition, mood, attention, arousal, and these observations will require long-term monitoring to fully characterize potential side effects and benefits. Surgical targeting of the PPN is feasible and shows promise for addressing axial symptoms in PD but may require further refinements in targeting, improved imaging, and better lead design to fully realize benefits. This review summarizes the current knowledge of PPN as a DBS target and areas that need to be addressed to advance the field.
Collapse
Affiliation(s)
- Hokuto Morita
- Department of Neurology, University of Florida Center for Movement Disorders and Neurorestoration , Gainesville, FL , USA
| | - Chris J Hass
- Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, FL , USA
| | - Elena Moro
- Department of Psychiatry and Neurology, CHU de Grenoble , Grenoble , France
| | - Atchar Sudhyadhom
- Department of Radiation Oncology, University of California at San Francisco , San Francisco, CA , USA
| | - Rajeev Kumar
- Rocky Mountain Movement Disorder Center , Denver, CO , USA
| | - Michael S Okun
- Department of Neurology, University of Florida Center for Movement Disorders and Neurorestoration , Gainesville, FL , USA
| |
Collapse
|
8
|
Peterson DS, Pickett KA, Duncan R, Perlmutter J, Earhart GM. Gait-related brain activity in people with Parkinson disease with freezing of gait. PLoS One 2014; 9:e90634. [PMID: 24595265 PMCID: PMC3940915 DOI: 10.1371/journal.pone.0090634] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022] Open
Abstract
Approximately 50% of people with Parkinson disease experience freezing of gait, described as a transient inability to produce effective stepping. Complex gait tasks such as turning typically elicit freezing more commonly than simple gait tasks, such as forward walking. Despite the frequency of this debilitating and dangerous symptom, the brain mechanisms underlying freezing remain unclear. Gait imagery during functional magnetic resonance imaging permits investigation of brain activity associated with locomotion. We used this approach to better understand neural function during gait-like tasks in people with Parkinson disease who experience freezing--"FoG+" and people who do not experience freezing--"FoG-". Nine FoG+ and nine FoG- imagined complex gait tasks (turning, backward walking), simple gait tasks (forward walking), and quiet standing during measurements of blood oxygen level dependent (BOLD) signal. Changes in BOLD signal (i.e. beta weights) during imagined walking and imagined standing were analyzed across FoG+ and FoG- groups in locomotor brain regions including supplementary motor area, globus pallidus, putamen, mesencephalic locomotor region, and cerebellar locomotor region. Beta weights in locomotor regions did not differ for complex tasks compared to simple tasks in either group. Across imagined gait tasks, FoG+ demonstrated significantly lower beta weights in the right globus pallidus with respect to FoG-. FoG+ also showed trends toward lower beta weights in other right-hemisphere locomotor regions (supplementary motor area, mesencephalic locomotor region). Finally, during imagined stand, FoG+ exhibited lower beta weights in the cerebellar locomotor region with respect to FoG-. These data support previous results suggesting FoG+ exhibit dysfunction in a number of cortical and subcortical regions, possibly with asymmetric dysfunction towards the right hemisphere.
Collapse
Affiliation(s)
- Daniel S. Peterson
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Kristen A. Pickett
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Ryan Duncan
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Joel Perlmutter
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Radiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Gammon M. Earhart
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
9
|
|
10
|
Pedunculopontine nucleus area oscillations during stance, stepping and freezing in Parkinson's disease. PLoS One 2013; 8:e83919. [PMID: 24386308 PMCID: PMC3875496 DOI: 10.1371/journal.pone.0083919] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 11/10/2013] [Indexed: 12/03/2022] Open
Abstract
The pedunculopontine area (PPNa) including the pedunculopontine and cuneiform nuclei, belongs to the mesencephalic locomotor region. Little is known about the oscillatory mechanisms underlying the function of this region in postural and gait control. We examined the modulations of the oscillatory activity of the PPNa and cortex during stepping, a surrogate of gait, and stance in seven Parkinson’s disease patients who received bilateral PPNa implantation for disabling freezing of gait (FOG). In the days following the surgery, we recorded behavioural data together with the local field potentials of the PPNa during sitting, standing and stepping-in-place, under two dopaminergic medication conditions (OFF and ON levodopa). Our results showed that OFF levodopa, all subjects had FOG during step-in-place trials, while ON levodopa, stepping was effective (mean duration of FOG decreasing from 61.7±36.1% to 7.3±10.1% of trial duration). ON levodopa, there was an increase in PPNa alpha (5–12 Hz) oscillatory activity and a decrease in beta (13–35 Hz) and gamma (65–90 Hz) bands activity. PPNa activity was not modulated during quiet standing and sitting. Our results confirm the role of the PPNa in the regulation of gait and suggest that, in Parkinson disease, gait difficulties could be related to an imbalance between low and higher frequencies.
Collapse
|
11
|
Pienaar IS, Harrison IF, Elson JL, Bury A, Woll P, Simon AK, Dexter DT. An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson's disease. Brain Struct Funct 2013; 220:479-500. [PMID: 24292256 DOI: 10.1007/s00429-013-0669-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
A rostral brainstem structure, the pedunculopontine nucleus (PPN), is severely affected by Parkinson's disease (PD) pathology and is regarded a promising target for therapeutic deep-brain stimulation (DBS). However, understanding the PPN's role in PD and assessing the potential of DBS are hampered by the lack of a suitable model of PPN degeneration. Rats were rendered Parkinsonian through a unilateral substantia nigra pars compacta (SNpc) stereotaxic injection of the proteasome inhibitor Lactacystin, to investigate whether the lesion's pathological effects spread to impact the integrity of PPN cholinergic neurons which are affected in PD. At 5 weeks post-surgery, stereological analysis revealed that the lesion caused a 48 % loss of dopaminergic SNpc neurons and a 61 % loss of PPN cholinergic neurons, accompanied by substantial somatic hypotrophy in the remaining cholinergic neurons. Magnetic resonance imaging revealed T2 signal hyper-/hypointensity in the PPN of the injected hemisphere, respectively at weeks 3 and 5 post-lesion. Moreover, isolated PPN cholinergic neurons revealed no significant alterations in key autophagy mRNA levels, suggesting that autophagy-related mechanisms fail to protect the PPN against Lactacystin-induced cellular changes. Hence, the current results suggest that the Lactacystin PD model offers a suitable model for investigating the role of the PPN in PD.
Collapse
Affiliation(s)
- Ilse S Pienaar
- Division of Brain Sciences, Department of Medicine, Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, W12 ONN, UK,
| | | | | | | | | | | | | |
Collapse
|
12
|
Mazzone P, Sposato S, Insola A, Scarnati E. The Clinical Effects of Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus in Movement Disorders May Not Be Related to the Anatomical Target, Leads Location, and Setup of Electrical Stimulation. Neurosurgery 2013; 73:894-906; discussion 905-6. [DOI: 10.1227/neu.0000000000000108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
The pedunculopontine tegmental nucleus (PPTg) is a novel target for deep brain stimulation (DBS) in movement disorders.
OBJECTIVE:
To clarify the relationships between the individual anatomic variations of the brainstem, the site in which the PPTg DBS is applied, and the clinical outcome in a relatively large number of patients affected by Parkinson disease or progressive supranuclear palsy.
METHODS:
Magnetic resonance images have been used to evaluate brainstem anatomy and the relationships between lead position and specific brainstem landmarks. All data were matched on atlas representations of the PPTg and were correlated with Unified Parkinson Disease Rating Scale III (UPDRS III), subitems 27 to 30 of UPDRS III and the Hoehn and Yahr evaluations.
RESULTS:
A high variance of brainstem parameters was evident, affecting the relationships between the position of the nucleus and lead contacts. According to the contacts giving the best clinical outcome, patients could be distinguished between those who required the use of 2 adjacent contacts and those who required stimulation through 2 nonadjacent contacts. Furthermore, in the former group the target coordinates were more lateral and deeper compared with the latter group.
CONCLUSION:
Individual PPTg-DBS planning is required to overcome the inconsistencies linked to the high variability in the brainstem anatomy of patients. The lack of correlations between lead position, contact setup, and clinical outcome indicate that the benefits of PPTg DBS may not be strictly linked to the site of stimulation within the PPTg area, and may not depend upon the neurons still surviving in this region in Parkinson disease or progressive supranuclear palsy.
Collapse
Affiliation(s)
- Paolo Mazzone
- Stereotactic and Functional Neurosurgery, CTO Hospital, ASL RMC, Rome, Italy
| | | | - Angelo Insola
- Neurophysiopathology, CTO Hospital, ASL RMC, Rome, Italy
| | - Eugenio Scarnati
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
13
|
Mazzone P, Padua L, Falisi G, Insola A, Florio TM, Scarnati E. Unilateral deep brain stimulation of the pedunculopontine tegmental nucleus improves oromotor movements in Parkinson’s disease. Brain Stimul 2012; 5:634-41. [DOI: 10.1016/j.brs.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/25/2011] [Accepted: 01/04/2012] [Indexed: 10/28/2022] Open
|
14
|
Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease therapeutics: new developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012; 37:213-46. [PMID: 21956442 PMCID: PMC3238085 DOI: 10.1038/npp.2011.212] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/13/2022]
Abstract
The demonstration that dopamine loss is the key pathological feature of Parkinson's disease (PD), and the subsequent introduction of levodopa have revolutionalized the field of PD therapeutics. This review will discuss the significant progress that has been made in the development of new pharmacological and surgical tools to treat PD motor symptoms since this major breakthrough in the 1960s. However, we will also highlight some of the challenges the field of PD therapeutics has been struggling with during the past decades. The lack of neuroprotective therapies and the limited treatment strategies for the nonmotor symptoms of the disease (ie, cognitive impairments, autonomic dysfunctions, psychiatric disorders, etc.) are among the most pressing issues to be addressed in the years to come. It appears that the combination of early PD nonmotor symptoms with imaging of the nigrostriatal dopaminergic system offers a promising path toward the identification of PD biomarkers, which, once characterized, will set the stage for efficient use of neuroprotective agents that could slow down and alter the course of the disease.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
15
|
The pedunculopontine nucleus as a target for deep brain stimulation. J Neural Transm (Vienna) 2010; 118:1461-8. [PMID: 21194002 DOI: 10.1007/s00702-010-0547-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 11/29/2010] [Indexed: 10/18/2022]
Abstract
The pedunculopontine nucleus (PPN) is a brain stem locomotive center that is also involved in the processing of sensory and behavioral information. The PPN has been recently proposed as a potential target for the treatment of axial symptoms in Parkinson's disease (PD). To date, results of the first series of PD patients treated with PPN deep brain stimulation (DBS) have shown promising results. In this article, we review some of the basic aspects of the PPN as a target and the outcome of the recently published clinical trials.
Collapse
|
16
|
Alam M, Schwabe K, Krauss JK. The pedunculopontine nucleus area: critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 2010; 134:11-23. [PMID: 21147837 DOI: 10.1093/brain/awq322] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, the pedunculopontine nucleus has been highlighted as a target for deep brain stimulation for the treatment of freezing of postural instability and gait disorders in Parkinson's disease and progressive supranuclear palsy. There is great controversy, however, as to the exact location of the optimal site for stimulation. In this review, we give an overview of anatomy and connectivity of the pedunculopontine nucleus area in rats, cats, non-human primates and humans. Additionally, we report on the behavioural changes after chemical or electrical manipulation of the pedunculopontine nucleus. We discuss the relation to adjacent regions of the pedunculopontine nucleus, such as the cuneiform nucleus and the subcuneiform nucleus, which together with the pedunculopontine nucleus are the main areas of the mesencephalic locomotor region and play a major role in the initiation of gait. This information is discussed with respect to the experimental designs used for research purposes directed to a better understanding of the circuitry pathway of the pedunculopontine nucleus in association with basal ganglia pathology, and with respect to deep brain stimulation of the pedunculopontine nucleus area in humans.
Collapse
Affiliation(s)
- Mesbah Alam
- Department of Neurosurgery, Medical University of Hannover, Carl-Neuberg-Str 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
17
|
Massey L, Yousry T. Anatomy of the Substantia Nigra and Subthalamic Nucleus on MR Imaging. Neuroimaging Clin N Am 2010; 20:7-27. [DOI: 10.1016/j.nic.2009.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Zrinzo L, Zrinzo LV, Hariz M. Neuromodulation: anatomical precision is neither tedious nor outdated. Neuromodulation 2010; 13:70-1. [PMID: 21992769 DOI: 10.1111/j.1525-1403.2009.00265.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK Department of Anatomy, Genetics and Cell Biology, University of Malta, Msida, Malta Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK; Department of Neurosurgery, University Hospital, Umeå, Sweden
| | | | | |
Collapse
|
19
|
[Deep brain stimulation and gait disorders in Parkinson disease]. Rev Neurol (Paris) 2009; 166:178-87. [PMID: 19815246 DOI: 10.1016/j.neurol.2009.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/01/2009] [Accepted: 07/16/2009] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Gait disorders and freezing of gait (FOG) are seen in most patients with advanced Parkinson disease. Response to levodopa and deep brain stimulation is variable across patients. STATE OF ART Thalamic stimulation is ineffective on gait and can even worsen balance when bilaterally applied. Pallidal stimulation moderately improves gait disorders and FOG although this effect tends to wane after three to five years. Stimulation of the subthalamic nucleus (STN) improves levodopa-responsive gait disorders and FOG. However, some patients worsen after STN stimulation and others are better improved under levodopa than under STN stimulation. Synergistic effects of the two treatments have been reported. As for pallidal stimulation, there is a failure of long-term STN stimulation to improve gait, probably due to the involvement of non-dopaminergic pathways as the disease progresses. Levodopa-resistant gait disorders and FOG do not usually benefit from STN stimulation. In the rare cases of levodopa-induced FOG, STN stimulation may be indirectly effective, as it enables reduction or arrest of the levodopa treatment. PERSPECTIVES Pedunculopontine nucleus stimulation has recently been performed in small groups of patients with disabling gait disorders and FOG. Although encouraging, the first results need to be confirmed by controlled studies involving larger series of patients. CONCLUSIONS Overall, gait disorders remain a motor PD symptom that is little improved, or only temporarily, by current pharmacological and surgical treatments. Patient management is complex.
Collapse
|